Roll. No								Question Booklet Number	
O.M.R. Serial No.									

B.Sc. (SEM.-VI) (NEP) (SUPPLE.) EXAMINATION, 2024-25 BIOTECHNOLOGY

(Bioinformatics)

(Elective) (BBT6004)

Paper Code

Ouestion Booklet Series

Max. Marks: 75

Time: 1:30 Hours

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 100 questions. Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet. All questions carry equal marks.
- Examine the Booklet and the OMR 3. Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as - A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे 1. कहा न जाए।
- प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 2. प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका 3. तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है :

(शेष निर्देश अन्तिम पृष्ठ पर)

1.	Who	is considered the father of ormatics?	5.	Entrez	is best described as:
				(A)	Sequence searching algorithm
	(A)	Gregor Mendel		(B)	Visualization software
	(B)	Watson		(C)	Spectroscopy instrument
	(C)	Sanger		(D)	Integrated database retrieval
	(D)	Margaret Dayhoff			system
2.	The no	otion of homology primarily refers to:	6.		source is well known for protein
	(A)	Chemical similarity		sequer	nce data?
	(B)	Shared ancestry		(A)	GENBANK
	(C)	Shared function only		(B)	SWISSPROT
	(D)	Sequence length		(C)	EMBL
3.	Which	is a major nucleotide sequence		(D)	Unigene
	databa	ase?	7.	Unigen	ne database clusters:
	(A)	PDB		(A)	Protein families
	(B)	SWISSPROT		(B)	Chemical structures
	(C)	GENBANK		(C)	Chromosomes
	(D)	BRENDA		(D)	EST sequences by gene
4.	EMBL	is a database for:	8.	Which	one is a feature of GENBANK?
	(A)	Protein sequences		(A)	Only protein data
	(B)	Nucleotide sequences		(B)	Not web accessible
	(C)	Metabolite profiles		(C)	Gene expression data only
	(D)	Species taxonomy		(D)	Flatfile format
Z0101	19T/36	(3)		[P.T.O.]

9.	The ter	m homology implies:	13.		of these would you use to find gene	
	(A)	100% sequence identity		sequen	ices in Humans?	
	(B)	Evolutionary relatedness		(A)	GENBANK	
	(C)	Only structural similarity		(B)	KEGG	
	(D)	Randomness		(C)	PDB	
10				(D)	SCOP	
10.	databa	portal for accessing multiple NCBI ses is:	14.	History of Bioinformatics traces back to the		
	(A) FASTA			compilation of:		
				(A)	Sequence data	
	(B)	Entrez		(B)	Protein structures only	
	(C)	PDB		(C)	Literature only	
	(D)	UNIPROT		(D)	Plasmid maps	
11.	Sequer	nce Annotation means:	15.	Sequer	nce information sources are important	
	(A)	Deleting genes		for:		
	(B)	Only sequencing		(A)	Text mining	
	(C)	Protein folding		(B)	Mass spectrometry	
	(D)	Predicting the biological function of		(C)	Chemical structure elucidation	
		sequences		(D)	Designing PCR primers	
12.	Which	database is a primary source of	16.	What d	oes NCBI stand for?	
	nucleot	ide information in Europe?		(A)	National Center for Big Informatics	
	(A)	GENBANK		(B)	National Center for Biotechnology	
	(B)	EMBL			Information	
	(C)	SWISSPROT		(C)	New Computational Biology Institute	
	(D)	PDB		(D)	None of these	

(4)

17.	What is	s meant by curated database?	21.		of the following does EMBL focus
	(A)	Automatically generated only		on?	_
	(B)	Checked and annotated by experts		(A)	Europe
	(C)	Only for clinical trials		(B)	North America
	(D)	Contains only raw data		(C)	Asia
18.		nable sequence databases are		(D)	Africa
10.	necess	·	22.	The ma	ain purpose of sequence information s is to:
	(A)	Identify homologs		(A)	Store recipes
	(B)	Detect plagiarism		(B)	Run PCR only
	(C)	Synthesize DNA		(C)	Determine pH
	(D)	Purify proteins		(D)	Help understand DNA, RNA, protein
19.	The pri	mary bioinformatics tool for sequence			sequences
	similari	similarity is:		Which is not a nucleotide sequence database?	
	(A)	BLAST		(A)	EMBL
	(B)	PCR		(B)	SWISSPROT
	(C)	ELISA		(C)	GENBANK
	(D)	Microarray		(D)	DDBJ
20.	Unigen	e primarily helps in:	24.		nk updates:
	(A)	Genome assembly		(A)	Annually
	(B)	Identifying unique expressed genes		(B)	Monthly
	(C)	Protein structure prediction		(C)	Daily
	(D)	Taxonomy only		(D)	Never
Z0101	19T/36	(5)		[P.T.O.]

25.	EST st	ands for:	29.		chnique used to detect DNA fragments
	(A)	Expressed Sequence Tags		by siz	e:
	(B)	Experimental Synthesis Theory		(A)	PCR
	(C)	Electronic Supplementary Table		(B)	ELISA
	(D)	Extended Sequence Transcription		(C)	HPLC
26.	Which	database focuses on protein		(D)	Southern blotting
	sequei	nces?	30.	Mass	spectrometry is used for:
	(A)	EMBL		(A)	DNA sequencing
	(B)	GENBANK		(B)	Protein identification
	(C)	SWISSPROT		(C)	Blotting
	(D)	DDBJ		(D)	PCR
27.	PDB p	rimarily contains	31.	Restric	ction digestion helps in:
	(A)	DNA sequences		(A)	Amplifying DNA
	(B)	Carbohydrate pathways		(B)	Sequencing RNA
	(C)	Egg shell proteins		(C)	Modifying proteins
	(D)	Protein 3D structures		(D)	Cutting DNA at specific sites
28.	SWISS	SPROT's main feature is:	32.	Chrom	natograms result from:
	(A)	Raw unannotated data		(A)	Sequence alignment
	(B)	High quality, curated protein sequences		(B)	Chromatography
	(C)	Only RNA data		(C)	PCR only
	(D)	Only nucleotides		(D)	Mass spectrometry
Z0101	19T/36	(6)		

33.	TREME	BL is a supplement to:	37.		n method can be used to measure
	(A)	GenBank		MKINA	A abundance?
	(B)	PDB		(A)	Southern blot
	(C)	SWISSPROT		(B)	Microarray
	(D)	KEGG		(C)	Restriction digestion
34.				(D)	HPLC
J 4 .		rrays are commonly used for:	38.	SWIS	SPROT provides:
	(A)	Protein folding		(A)	Protein structures
	(B)	DNA sequencing		(B)	Protein-coding genes information
	(C)	Restriction digestion		(C)	Annotated protein sequence data
	(D)	Gene expression profiling		(D)	DNA microarray results
35.	PCR is	essential for:	20		·
	(A)	Protein purification	39.		entries are described by:
	(B)	Amplifying DNA		(A)	Atomic coordinates
		RNA stability		(B)	Nucleotide sequences
	(C)	·		(C)	Only chemical formulas
	(D)	Sequence alignment		(D)	Band sizes
36.	Which	is not a protein database?	40.	The p	rotein data bank (PDB) is updated:
	(A)	SWISSPROT		(A)	Once a year
	(B)	PDB		(B)	Never
	(C)	GENBANK		(C)	By request only
	(D)	TREMBL		(D)	Regularly
				(D)	rregularly
Z0101	19T/36		(7)		[P.T.O.]

[P.T.O.]

41.	Digesti	on by restriction enzymes produces:	45.	PDB p	rovides information about:
	(A)	Amino acids		(A)	DNA
	(B)	DNA fragments		(B)	RNA
	(C)	Sugars		(C)	Protein and Nucleic Acid structures
	(D)	Fats		(D)	Lipids
42.	The fire	st step in most proteomics workflows:	46.	Biospe	ctrometry databases are mainly for:
	(A)	Mass spectrometry		(A)	Protein sequences
	(B)	Bioinformatics		(B)	Spectral analysis
	(C)	PCR		(C)	Chromatography
	(D)	Protein separation		(D)	Plasmid mapping
43.	Microa	rrays use:	47.	•	eneration techniques commonly used nformatics include:
	(A)	Labeled probes		(A)	Restriction digestion
	(B)	Proteases		(B)	PCR
	(C)	Restriction enzymes		(C)	Mass spectrometry
	(D)	All of the above		(D)	All of the above
44.	Mass s	spectrometry is not used for:	48.	What is	s primary source in Bioinformatics?
	(A)	Protein identification		(A)	Textbooks
	(B)	Quantifying proteins		(B)	Direct experimental data
	(C)	Finding DNA sequences		(C)	Review articles
	(D)	Protein modification analysis		(D)	Wikipedia

(8)

49.	Which	is true about PROSITE?	53.	Multipl	e sequence alignment helps in:
	(A)	Protein families and domains database		(A)	Determining gene expression
	(B)	Nucleotide sequences		(B)	Protein folding
	(C)	Carbohydrates database		(C)	PCR efficiency
	(D)	mRNA only		(D)	Finding conserved regions
50.	The ou	utput of mass spec can be:	54.	A muta	ation matrix is used to:
	(A)	Chromatograms		(A)	Count PCR cycles
	(B)	Blot images		(B)	Sequence mapping only
	(C)	DNA sequences		(C)	Cloning vectors
	(D)	pH values		(D)	Score residue substitutions in
51.	What o	does the acronym BLAST stand for?		(-)	alignments
	(A)	Bioinformatics Language Analysis Search Tool	55.	Phylog	penetic trees represent:
	(B)	Biological Layout Algorithm Search		(A)	Protein folding
	()	Tool		(B)	Evolutionary relationships
	(C)	Basic Local Alignment Search Tool		(C)	Mass spectrometry data
	(D)	Biochemical Local Array System Tool		(D)	Chromatograms
52.	Open I	Reading Frames (ORFs) are used to:	56.	The malignm	natrix commonly used in protein ents:
	(A)	Detect possible protein-coding regions		(A)	FASTA
	(B)	Sequence DNA		(B)	GenBank
	(C)	Calculate molecular weight		(C)	PAM
	(D)	Align protein sequences		(D)	Microarray
Z0101	119T/36	(9)		[P.T.O.]

57.	Pairwis	se alignment compares:	61.	Pairwise sequence alignment can be done		
	(A)	Two sequences		using:		
	(B)	Multiple sequences		(A)	ClustalW	
	(C)	Only proteins		(B)	BLAST	
	(D)	Images		(C)	Both (A) and (B)	
58.		ASTA program is used for:		(D)	None of these	
00.		. •	62.		The result of BLAST search with a small E-	
	(A)	DNA synthesis		value	indicates:	
	(B)	Protein folding		(A)	Unreliable match	
	(C)	Database curation		(B)	Statistically significant similarity	
	(D)	Sequence alignment searching		(C)	Mismatched primer	
59.	In sequ	uence assembly, contigs are:		(D)	DNA degradation	
	(A)	Completed chromosomes	63.	The in	itial step in phylogenetic analysis:	
	(B)	Overlapping DNA sequence)	(A)	Sequence retrieval	
		fragments		(B)	Protein purification	
	(C)	Protein motifs		(C)	Electrophoresis	
	(D)	Restriction enzymes		(D)	PCR only	
60.	What is	s a substitution matrix used in?	64.	•	le sequence alignments are made	
	(A)	PCR		using:		
	(B)	DNA extraction		(A)	BLAST	
		ELISA		(B)	FASTA	
	(C)			(C)	CLUSTAL Omega	
	(D)	(D) Sequence alignment		(D)	Gel electrophoresis	
Z0101	19T/36	(10)			

65.	Seque	nce assembly is required in:		69.	Detect	ing open reading frames is key for:
	(A)	Genomics projects			(A)	Gene prediction
	(B)	PCR			(B)	RNA editing
	(C)	Western blot			(C)	Chromosome painting
	(D)	Mass spec			(D)	Mass analysis
66.	Tree b	ouilding algorithms include:		70.	Substi	tution matrices are used for:
	(A)	UPGMA			(A)	Cloning
	(B)	Neighbor joining			(B)	Evaluating alignments
	(C)	Both (A) and (B)			(C)	Chemical synthesis
	(D)	None of these			(D)	Microarray design
67.	NCBI	BLAST can align:		71.	Phylog	genetic analysis helps to:
	(A)	Nucleotide only			(A)	Amplify DNA
	(B)	Protein only			(B)	Separate proteins
	(C)	Both (A) and (B)			(C)	Understand gene evolution
	(D)	RNA only			(D)	None of these
68.	Interpr	eting BLAST result includes:		72.	Which	is a global alignment tool?
	(A)	Looking at E-value			(A)	Needleman-Wunsch
	(B)	Checking alignment score			(B)	Smith-Waterman
	(C)	Both (A) and (B)			(C)	BLAST
	(D)	None of these			(D)	PCR
Z0101	119T/36		(11)		[P.T.O.]

73.	Assem	bly of sequences results in:	77.	FAST	A is:
	(A)	Exons		(A)	Only a file format
	(B)	Restriction sites		(B)	An algorithm and file format
	(C)	Contigs		(C)	Imaging technique
	(D)	Domain families		(D)	Genome cloning method
74.		nd BLOSUM matrices are examples	78.	BLAS	T is used for:
	of:			(A)	Finding sequence similarities
	(A)	Substitution matrices		(B)	DNA sequencing only
	(B)	Restriction enzymes		(C)	PCR only
	(C)	Sequencing primers		(D)	Protein synthesis
	(D)	None of these	79.	Data s	submission in genomics is necessary
75.		program finds sequence similarity		for:	
	against	protein databases?		(A)	Publication of research
	(A)	BLASTp		(B)	Increasing public access to data
	(B)	BLASTn		(C)	Both (A) and (B)
	(C)	BLASTx		(D)	None of these
	(D)	All of these	80.	Genor	me annotation is:
76.	SRS in	bioinformatics stands for:		(A)	Identifying genomic features and
	(A)	Sequence Retrieval System		()	functions
	(B)	Sequence Reading Software		(B)	RNA synthesis
	(C)	Standardized Resource System		(C)	Protein folding
	(D)	Sample Reference Software		(D)	Only gene expression
Z0101	19T/36	(1	2)		

81.		ain sequence similarity searching	86.	A reco	gnized tool for genome browsing:
	method	l:		(A)	UCSC Genome Browser
	(A)	Microarray		(B)	Microarray
	(B)	FASTA/BLAST		(C)	PCR
	(C)	PCR		(D)	PDB
	(D)	Southern blot	87.		can access:
82.	Gene id	dentification tools can include:		(A)	Protein data
	(A)	GENSCAN			
	(B)	Augustus		(B)	DNA sequence
	(C)	Both (A) and (B)		(C)	Structure data
	(D)	PCR primer designer		(D)	All of the above
83.		database would you use for protein	88.	Data s	ubmission to NCBI is called:
	domain	annotation?		(A)	Depositing
	(A)	PROSITE		(B)	Data warehousing
	(B)	GenBank		(C)	PCR
	(C)	ENA		(D)	Dry-lab
	(D)	ArrayExpress	89.	Similar	ity search with BLAST provides:
84.	Pattern to:	and repeat finding in genomes helps		(A)	E-value
	(A)	Identify microsatellites		(B)	Alignment score
	(B)	Annotate gene families		(C)	Both (A) and (B)
	(C)	Both (A) and (B)		(D)	Laboratory protocol
	(D)	None of these	90.	Which	file format is commonly used for
85.	Submis	sion format for GenBank is:		sequer	nce data?
	(A)	XML only		(A)	JPEG
	(B)	Flatfile		(B)	FASTA
	(C)	FASTA		(C)	PNG
	(D)	Both (B) and (C)		(D)	HTML
Z0101	19T/36	(13	3)		[P.T.O.]

91.	Genome annotation helps to:		,	96.	Data submission can be rejected if:	
	(A)	Identify new genes			(A)	Format errors
	(B)	Predict gene function			(B)	No annotation
	(C)	Both (A) and (B)			(C)	Partial sequence
	(D)	None of these			(D)	Any of these
92.	What is the major aim of data submission?		,	97.	BLAST report does not provide:	
	(A)	Sharing data with the community			(A)	E-value
	(B)	Reducing computer memory			(B)	Percent identity
	(C)	Destroying old data			(C)	Protein size
	(D)	Only storage			(D)	Alignment region
93.	Which tool predicts exons and introns in		,	98.	Sequence annotation pipelines use:	
	eukaryo	karyotic genomes?			(A)	Gene prediction software
	(A)	GENSCAN			(B)	Manual curation
	(B)	BLAST			(C)	Both (A) and (B)
	(C)	PCR			(D)	None of these
	(D)) BLAT		99.	What does genome pattern finding help	
94.	FASTA format begins with:				with?	
	(A)	A letter A			(A)	Short sequence motifs
	(B)	> symbol			(B)	Repeat regions
	(C)	# symbol			(C)	Both (A) and (B)
	(D)	; semicolon			(D)	Microarrays
95.	Sequence similarity search can detect:			100.	New gene identification commonly involves:	
	(A)	Homology			(A)	Similarity searching
	(B)	Function			(B)	Experimental validation
	(C)	Conserved domains			(C)	Genome annotation
	(D)	All of these			(D)	All of the above
Z010119T/36		14)			

Rough Work / रफ कार्य

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।