Roll. No								Question Booklet Number		
O.M.R. Serial No.]	

B.Sc. (SEM.-V) (NEP) (SUPPLE.) EXAMINATION, 2024-25 BIOTECHNOLOGY

(Environmental Biotechnology)

Paper Code								
Z	0	1	0	1	0	9	T	

[BBT-5004]

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

Time: 1:30 Hours

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

1.		tional source of energy?	5.	produces which useful fuel?		
	(A)	Solar energy		(A)	Hydrogen	
	(B)	Firewood		(B)	Biogas	
	(C)	Wind energy		(C)	Kerosene	
	(D)	Geothermal energy		(D)	Petroleum	
2.	The ma	ajor pollutant released from burning	6.	The use causes	e of animal dung cakes as fuel mainly	
	(A)	Carbon dioxide		(A)	Increase in soil nutrients	
	(B)	Nitrous oxide		(B)	Reduction in indoor air quality	
	(C)	Sulphur dioxide		(C)	Improved forest cover	
	(D)	Methane		(D)	Reduction in methane emission	
3.	Firewo significa		7.		gas is the largest contributor to global g from conventional fuels?	
	(A)	Ozone layer recovery		(A)	Carbon monoxide	
	(B)	Indoor air pollution		(B)	Methane	
	(C)	Increased soil fertility		(C)	Carbon dioxide	
	(D)	Groundwater recharge		(D)	Ozone	
4.		greenhouse gas is primarily emitted nimal waste decomposition?	8.		od burning in rural households is most / linked with:	
	(A)	Carbon dioxide		(A)	Malnutrition	
	(B)	Methane		(B)	Indoor respiratory diseases	
	(C)	Nitrous oxide		(C)	Improved crop yield	
	(D)	Ozone		(D)	Ozone production	

9.		mining can cause which major nmental impact?	13.	The biogas produced by microbes mainly contains:		
	(A)	Ozone depletion		(A)	Hydrogen	
	(B)	Soil erosion and land degradation		(B)	Methane and carbon dioxide	
	(C)	Groundwater recharge		(C)	Sulphur dioxide	
	(D)	Desert cooling		(D)	Oxygen and nitrogen	
10.	Which	is the least polluting fossil fuel?	14.	The bu	urning of conventional fuels like coal	
	(A)	Coal		and gas is directly responsible for:		
	(B)	Petroleum		(A)	Glacier melting	
	(C)	Natural gas		(B)	Ozone formation in stratosphere	
	(D)	Diesel		(C)	Increased rainfall	
11.		use of plant-based fuels in an		(D)	Earthquake occurrence	
	unsust (A)	Deforestation	15.	Which of the following is a renewable conventional fuel?		
	(B)	Soil conservation		(A)	Firewood	
	(C)	Increased biodiversity		(B)	Coal	
	(D)	Enhanced oxygen levels		(C)	Petroleum	
12.		I-powered energy (draught animals) isidered environmentally friendly		(D)	Natural gas	
	becau	se:	16.	Biogas	s production is carried out by:	
	(A)	It produces no greenhouse gases		(A)	Photosynthetic bacteria	
	(B)	It is renewable and biodegradable		(B)	Aerobic bacteria	
	(C)	It increases soil fertility		(C)	Anaerobic microbes	
	(D)	It generates high electricity		(D)	Fungi only	

9.

- 17. Which is a major environmental benefit of biogas technology?(A) Reduction of greenhouse gases
 - (A) Reduction of greenhouse gases completely
 - (B) Recycling of organic waste into fuel
 - (C) Increase in deforestation
 - (D) Production of acid rain
- 18. Hydrogen gas production by microbes is considered eco-friendly because:
 - (A) It produces only water as a byproduct
 - (B) It requires no energy
 - (C) It emits carbon monoxide
 - (D) It forms greenhouse gases
- 19. The process of converting sugar to alcohol is:
 - (A) Photosynthesis
 - (B) Fermentation
 - (C) Combustion
 - (D) Respiration
- 20. Which organism is commonly used in the fermentation of sugar to ethanol?
 - (A) Lactobacillus
 - (B) Saccharomyces cerevisiae
 - (C) Methanogens
 - (D) Clostridium

- 21. Gasohol is a mixture of:
 - (A) Gasoline and hydrogen
 - (B) Gasoline and ethanol
 - (C) Gasoline and biogas
 - (D) Gasoline and methane
- 22. The use of gasohol helps in:
 - (A) Increasing lead content in fuel
 - (B) Reducing vehicular emissions
 - (C) Increasing sulfur content in air
 - (D) Depleting soil fertility
- 23. The main drawback of hydrogen fuel is:
 - (A) High carbon emission
 - (B) Difficulty in storage and transportation
 - (C) Production of sulfur dioxide
 - (D) Low calorific value
- 24. Biogas slurry (residue) is valuable because:
 - (A) It is toxic waste
 - (B) It can be used as organic fertilizer
 - (C) It causes water pollution
 - (D) It has no use after gas extraction
- 25. Microbial hydrogen production often uses which process?
 - (A) Anaerobic digestion
 - (B) Photolysis and fermentation
 - (C) Combustion
 - (D) Gasification

2 0.	as:	or from sugar termentation is classified	3 0.	firewo	od is:
	(A)	Renewable biofuel		(A)	Higher smoke emission
	(B)	Fossil fuel		(B)	Reduction in indoor air pollution
	(C)	Synthetic polymer		(C)	Greater carbon footprint
	(D)	Natural gas derivative		(D)	Lower efficiency
27.		environmental issue can be reduced nding ethanol with petrol (gasohol)?	31.	•	rocess of using microbes to remove nmental pollutants is called:
	(A)	Carbon monoxide emission		(A)	Biomagnification
	(B)	Methane leakage		(B)	Biodegradation
	(C)	Chlorine release		(C)	Bioaccumulation
	(D)	Mercury pollution		(D)	Biomineralization
28.	The us	e of microbial hydrogen fuel contributes	32.		type of bacteria are most important spill degradation?
	(A)	Zero-carbon energy system		(A)	Methanogens
	(B)	High indoor air pollution		(B)	Hydrocarbonoclastic bacteria
	(C)	Deforestation		(C)	Lactic acid bacteria
	(D)	Release of PM 10		(D)	Cyanobacteria
29.		country is a global leader in the use ohol (ethanol blend fuels)?	33.	Pseud degra	domonas species are efficient in ding:
	(A)	India		(A)	Heavy metals
	(B)	Brazil		(B)	Petroleum hydrocarbons
	(C)	Russia		(C)	Cellulose
	(D)	Japan		(D)	Nitrogen fertilizers

- 34. In oil spill degradation, biosurfactants produced by microbes help by:
 - (A) Increasing oil viscosity
 - (B) Emulsifying hydrocarbons
 - (C) Inhibiting microbial growth
 - (D) Precipitating salts
- 35. The process of using plants to remove heavy metals is known as:
 - (A) Phytoremediation
 - (B) Bioremediation
 - (C) Mycoremediation
 - (D) Vermicomposting
- 36. Which microbe is known for its ability to degrade detergents?
 - (A) Pseudomonas putida
 - (B) Clostridium acetobutylicum
 - (C) Rhizobium leguminosarum
 - (D) Nitrosomonas europaea
- 37. Heavy metals like lead, mercury, and cadmium are difficult to biodegrade because they:
 - (A) Are non-biodegradable and toxic
 - (B) Can be oxidized by all bacteria
 - (C) Convert into harmless gases easily
 - (D) Act as microbial nutrients

- 38. Bioaccumulation of heavy metals in microbes often occurs in:
 - (A) Cell wall binding sites
 - (B) Mitochondria
 - (C) Lysosomes only
 - (D) Chloroplasts
- 39. White-rot fungi (e.g., Phanerochaete chrysosporium) are specialized in degrading:
 - (A) Cellulose only
 - (B) Hydrocarbons
 - (C) Lignin
 - (D) Plastic polymers
- 40. The enzyme system primarily responsible for lignin degradation is:
 - (A) Laccase and peroxidases
 - (B) Amylase and lipase
 - (C) Cellulose and chitinase
 - (D) Protease and nuclease
- 41. Cellulose degradation by microbes is mainly carried out by:
 - (A) Proteases
 - (B) Celluloses
 - (C) Lipases
 - (D) Peroxidases

42.		rial cellulase production?	40.	in soil and water is:			
	(A)	Escherichia coli		(A)	Biomagnification in food chains		
	(B)	Trichoderma reesei		(B)	Increased oxygen availability		
	(C)	Bacillus subtilis		(C)	Decreased microbial diversity		
	(D)	Saccharomyces cerevisiae		(D)	Both a and c		
43.		of the following methods enhances vial oil spill cleanup?	47.		erobic degradation of hydrocarbons spills requires:		
	(A)	Biostimulation (nutrient addition)		(A)	Oxygenases		
	(B)	Adding plasticizers		(B)	Nitrogenases		
	(C)	Increasing heavy metals		(C)	Amylases		
	(D)	Reducing oxygen supply		(D)	Phosphatases		
44.	•	ents are mainly degraded by microbes which enzyme?	48.	The sy	ynergistic degradation of lignocellulose es:		
	(A)	Oxygenases		(A)	Only laccase		
	(B)	Esterases		(B)	Both cellulase and ligninase		
	(C)	Sulfatases		(C)	Amylase and protease		
	(D)	Amylases		(D)	Only sulfatase		
45.		is an example of biosurfactant- ing bacteria helpful in oil degradation?	49.		premediation of detergent-contaminated is important because detergents:		
	(A)	Bacillus subtilis		(A)	Reduce water oxygenation by foaming		
	(B)	Rhizobium meliloti		(B)	Act as micronutrients		
	(C)	Mycobacterium tuberculosis		(C)	Improve soil fertility		
	(D)	Spirulina platensis		(D)	Have no ecological impact		

(8)

Z010109T/36

- 50. The process of using green plants to clean contaminated soil or water is called: (A) Bioleaching (B)
 - Phytoremediation
 - (C) Vermicomposting
 - (D) Mycoremediation
- 51. Phytoremediation of heavy metals works mainly through:
 - Photosynthesis (A)
 - (B) Bioaccumulation and translocation
 - (C) Denitrification
 - (D) **Nitrification**
- 52. The ability of plants to evaporate volatile pollutants through leaves is known as:
 - (A) Phytostabilization
 - (B) Phytovolatilization
 - (C) Phytoextraction
 - (D) Rhizofiltration
- 53. Rhizofiltration is useful for removing:
 - (A) Oil spills
 - (B) Metals from water
 - Pesticide residues in soil (C)
 - (D) **Plastics**
- 54. Microbial degradation of pesticides is mainly carried out by:
 - (A) Pseudomonas and Bacillus species
 - (B) Cyanobacteria
 - (C) Lactobacillus
 - (D) Methanogens

- The first step in microbial degradation of 55. aromatic hydrocarbons is usually:
 - (A) Carboxylation
 - (B) Hydroxylation by oxygenases
 - (C) Sulfonation
 - (D) **Nitration**
- 56. Chlorinated hydrocarbons (like DDT) are difficult to degrade because they:
 - (A) Are highly soluble in water
 - Are resistant to microbial attack due (B) to chlorine atoms
 - (C) Provide essential nutrients to microbes
 - (D) Volatilize easily
- 57. Which microbial group is highly efficient in degrading petroleum hydrocarbons?
 - (A) Cyanobacteria
 - (B) Hydrocarbonoclastic bacteria
 - (C) Methanogens
 - (D) Sulfate-reducing bacteria
- 58. Mycobacterium, Pseudomonas, Acinetobacter are widely used for degradation of:
 - (A) Aromatic hydrocarbons
 - Proteins in soil (B)
 - (C) Nitrogen fertilizers
 - (D) Plastics only

59.	Which enzyme group is most important in			63.	White-rot fungi are effective in degrading:			
	breakir	ng down chlorinated hydro	ocarbons?		(A)	Plastics only		
	(A)	Dehalogenases			(B)	Chlorinated hydrocarbons and		
	(B)	Proteases				aromatic pollutants		
	(C)	Amylases			(C)	Nitrogen fertilizers		
	(D)	Lipases			(D)	Simple sugars only		
60.	The process of enhancing microbial degradation by adding nutrients is called:			64.	Which of the following is a phytoremediation strategy to immobilize toxic metals in soil?			
	(A)	Bioaugmentation			(A)	Phytovolatilization		
	(B)	Biostimulation			(B)	Phytostabilization		
	(C)	Biodepletion			(C)	Phytoextraction		
	(D)	Bioaccumulation			(D)	Rhizodegradation		
61.	DDT p	ersistence in soil is mainly	due to:	65.	Anaero	obic microbes play a key role in		
	(A)	Rapid enzymatic breakd	own		degrad	ading:		
	(B)	Low volatility and high hyd	rophobicity		(A)	Petroleum hydrocarbons		
	(C)	High solubility in water			(B)	Chlorinated solvents like trichloroethylene		
	(D)	Active uptake by all mic	robes		(C)	Ammonia in water		
62.	The m	icrobial degradation of pet	roleum oil		(D)	Simple carbohydrates		
	spills is	s accelerated by:		66				
	(A)	Oxygen and supplementation	nitrogen	66.	The main product of complete microbia degradation of hydrocarbons is:			
	(B)	Chlorine addition			(A)	Methane only		
	(C)	Acidification of water			(B)	Carbon dioxide and water		
	(D)	Removal of bacteria			(C)	Sulfur dioxide		
	(-)				(D)	Nitrous oxide		

(10)

Z010109T/36

- 67. In phytoremediation of pesticides, the rhizosphere plays an important role by:
 - (A) Secreting enzymes and supporting microbial degradation
 - (B) Preventing plant uptake
 - (C) Increasing pesticide solubility only
 - (D) Neutralizing soil pH
- 68. Gasoline and petroleum degradation in water bodies is often limited by:
 - (A) Lack of oxygen and nutrients
 - (B) Excess sunlight
 - (C) Rapid microbial overgrowth
 - (D) High availability of enzymes
- 69. The environmental importance of microbial degradation of toxic chemicals is:
 - (A) It increases soil toxicity
 - (B) Converts pollutants into harmless products
 - (C) Releases more chlorinated residues
 - (D) Prevents photosynthesis in plants
- 70. The primary treatment of municipal wastewater mainly involves:
 - (A) Biological oxidation
 - (B) Removal of suspended solids by physical processes
 - (C) Chemical precipitation
 - (D) Chlorination

- 71. Which process is used for secondary treatment of sewage?
 - (A) Sedimentation
 - (B) Activated sludge process
 - (C) Screening
 - (D) Grit removal
- 72. Tertiary treatment of wastewater is primarily aimed at:
 - (A) Removing large debris
 - (B) Removing nutrients and dissolved salts
 - (C) Settling of sand and grit
 - (D) Killing pathogenic bacteria only
- 73. Trickling filter is commonly used in:
 - (A) Primary treatment
 - (B) Secondary treatment
 - (C) Sludge digestion
 - (D) Water softening
- 74. Trickling filter is commonly used in:
 - (A) Primary treatment
 - (B) Secondary treatment
 - (C) Sludge digestion
 - (D) Water softening

75. Which is the most common disinfectant 79. Effluents from textile and dye industries are used in wastewater treatment plants? often treated by: (A) Ozone (A) Aeration tanks only (B) Chlorine Coagulation-flocculation (B) and advanced oxidation (C) lodine (C) Screening alone (D) Ethanol 76. (D) Sedimentation only The sludge generated during wastewater treatment is stabilized using: 80. The biological oxygen demand (BOD) test is used to measure: (A) Combustion (B) Anaerobic digestion Concentration of heavy metals (A) Filtration (C) (B) Organic matter load in wastewater (D) Adsorption (C) Chloride content 77. In municipal solid waste management, (D) Pathogenic bacteria composting helps in: 81 The common method of solid waste (A) Reducing plastic waste disposal in India is: (B) Conversion of organic waste into (A) Sanitary landfill manure (B) Open dumping (C) Removing heavy metals Deep sea disposal (C) (D) Generating electricity directly (D) Composting only 78. Which process is commonly used for 82. Sanitary landfills are designed to: treatment of industrial effluents containing (A) Prevent leaching of contaminants heavy metals? into groundwater (A) Filtration Allow uncontrolled waste burning (B) chemical (B) Adsorption and (C) Increase decomposition by precipitation exposure to air (C) Chlorination

(D)

(12)

Act as compost pits

Trickling filter

(D)

		,	07.	1110 00	monioa contra cyclom camico.	
	for rem	noving:		(A)	Only domestic wastewater	
	(A)	Suspended solids		(B)	Only industrial effluents	
	(B)	Dissolved heavy metals and toxic		(C)	Both wastewater and storm water	
		chemicals		(D)	Groundwater only	
	(C)	Organic matter	88.	Biofert	ilizers are best described as:	
	(D)	Pathogens		(A)	Chemical fertilizers	
84.	Effluen	ts from paper and pulp industries are		(B)	Living microorganisms that enrich soil fertility	
	(A)	Lignin and chlorinated compounds		(C)	Plant growth regulators	
	(B)	Heavy metals only		(D)	Artificial soil conditioners	
	(C)	Plastics	89.	Rhizob	ium is an example of:	
	(D)	Oil and grease only		(A)	Asymbiotic nitrogen fixer	
85.		gas is commonly produced in		(B)	Symbiotic nitrogen fixer	
00.	anaerobic sludge digestion tanks?			(C)	Phosphate-solubilizing fungus	
	(A)	Carbon monoxide	90.	(D)	Algal biofertilizer	
	(B)	Methane		Which of the following is an algal biofertilizer		
	(D)	Methane		widely used in rice fields?		
	(C)	Sulfur dioxide		(A)	Spirogyra	
	(D)	Nitrous oxide		(B)	Nostoc	
86.	Effluen	t Treatment Plants (ETPs) in industries		(C)	Volvox	
	are ma	inly installed to:		(D)	Chlamydomonas	
	(A)	Increase production rate	91.	Phospl	nate-Solubilizing Fungi (PSF) include:	
	(B)	Reduce water pollution and toxicity		(A)	Aspergillus and Penicillium	
		before discharge		(B)	Rhizobium and Azotobacter	
	(C)	Generate fertilizers		(C)	Nostoc and Anabaena	
	(D)	Neutralize soil acidity		(D)	Saccharomyces and Candida	

(13)

[P.T.O.]

87.

The combined sewer system carries:

83.

Z010109T/36

Electrochemical methods are mainly used

- 92. Which of the following is a dual biofertilizer (fixes nitrogen + provides growth-promoting substances)?
 - (A) Azotobacter
 - (B) Rhizobium
 - (C) Azospirillum
 - (D) Nostoc
- 93. Blue-Green Algae (BGA) biofertilizers mainly enrich soil by:
 - (A) Fixing atmospheric nitrogen
 - (B) Producing humus
 - (C) Decomposing pesticides
 - (D) Increasing soil salinity
- 94. Symbiotic nitrogen fixation differs from asymbiotic fixation because:
 - (A) Symbiotic requires host plants, asymbiotic is free-living
 - (B) Symbiotic occurs in soil only
 - (C) Symbiotic releases pesticides
 - (D) Asymbiotic requires sunlight
- 95. Trichoderma fungi are used in agriculture mainly as:
 - (A) Biofertilizers and biocontrol agents
 - (B) Chemical pesticides
 - (C) Nitrogen fixers
 - (D) Green manure
- 96. Bt cotton is genetically modified to resist:
 - (A) Fungal infections
 - (B) Insect pests
 - (C) Drought
 - (D) Herbicides

- 97. The environmental benefit of herbicidetolerant GM crops is:
 - (A) Reduction in pesticide residues in soil
 - (B) Decrease in herbicide use
 - (C) Easier weed management and conservation tillage
 - (D) Higher soil salinity
- 98. Golden rice was developed to combat:
 - (A) Protein deficiency
 - (B) Vitamin A deficiency
 - (C) Iron deficiency
 - (D) lodine deficiency
- 99. The use of transgenic animals as bioreactors for producing therapeutic proteins indirectly benefits the environment by:
 - (A) Reducing reliance on chemical synthesis industries
 - (B) Increasing plastic waste
 - (C) Enhancing industrial effluents
 - (D) Producing more greenhouse gases
- 100. A potential environmental risk of GM organisms is:
 - (A) Gene transfer to wild species leading to ecological imbalance
 - (B) Complete eradication of pollution
 - (C) Rapid restoration of soil fertility
 - (D) Protection of biodiversity

Rough Work / रफ कार्य

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।