Roll. No							Question Booklet Number		
O.M.R. Serial No.									

B.Sc. (SEM.-V) (NEP) (SUPPLE.) EXAMINATION, 2024-25 BIOTECHNOLOGY

(Animal Biotechnology)

(BBT-5003)

	Paper Code								
Z	0	1	0	1	0	8	T		

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

1.	Which	of the following is an example of	1.	निम्नलिखित में से कौन–सा ऊर्ध्वाधर जीन अंतरण
	vertica	gene transfer?		(Vertical gene transfer) का उदाहरण है?
	(A)	Conjugation		(A) संयुग्मन
	(B)	Fertilization		(B) निषेचन
	(C)	Transformation		(C) ट्रांसफॉर्मेशन
	(D)	Transduction		(D) ट्रांसडक्शन
2.	Horizo	ntal gene transfer in bacteria does not	2.	बैक्टीरिया में क्षैतिज जीन अंतरण (Horizontal
	occur t	hrough:		gene transfer) इनमें से किसके द्वारा नहीं होता?
	(A)	Transformation (B) Transduction		(A) ट्रांसफॉर्मेशन (B) ट्रांसडक्शन
	(C)	Conjugation (D) Meiosis		(C) संयुग्मन (D) मियोसिस
3.	Which	mobile genetic element is known as	3.	कौन–सा गतिशील आनुवंशिक तत्व ''कूदने
	a "jum _l	oing gene"?		वाला जीन'' कहलाता है?
	(A)	Plasmid		(A) प्लास्मिड
	(B)	Transposon		(B) टांसपोसॉन
	(C)	Bacteriophage		(C) बैक्टीरियोफेज
	(D)	Chromosome		(D) गुणसूत्र
4.	The ma	ain role of bacteriophages in horizontal	4.	क्षैतिज जीन अंतरण में बैक्टीरियोफेज की मुख्य
	gene tr	ransfer is in :		भूमिका किस प्रक्रिया में होती है?
	(A)	Transformation		(A) ट्रांसफॉर्मेशन
	(B)	Conjugation		(B) संयुग्मन
	(C)	Transduction		(C) ट्रांसडक्शन
	(D)	Recombination		(D) पुनर्संयोजन
5.	Which	gene transfer method uses a	5.	कौन–सी जीन अंतरण विधि में डीएनए को
	microp	pipette to inject DNA into the		नाभिक में डालने के लिए माइक्रोपिपेट का
	nucleu	s?		उपयोग किया जाता है?
	(A)	CRISPR-Cas9		(A) CRISPR-Cas9
	(B)	Retrovirus-mediated transfer		(B) रेट्रोवायरस–आधारित अंतरण
	(C)	Microinjection		(C) माइक्रोइंजेक्शन
	(D)	Liposome-mediated transfer		(D) लिपोसोम–आधारित अंतरण
6.	Vertica	I gene transfer always involves :	6.	ऊर्ध्वाधर जीन अंतरण (Vertical gene transfer)
	(A)	Parent to offspring transfer		हमेशा किससे सम्बन्धित है?
	(B)	Exchange between unrelated		(A) माता-पिता से संतान में स्थानांतरण
		organisms		(B) असम्बन्धित जीवों के बीच आदान-प्रदान
	(C)	Random insertion of genes		(C) जीन का यादृच्छिक समावेशन
	(D)	Virus-mediated transfer		(D) वायरस-मध्यस्थित स्थानांतरण
Z0101	08T-A/	36	3)	[P.T.O.]

- 7. Which of the following is a non-viral gene transfer method?
 - (A) Retrovirus-mediated transfer
 - (B) Liposome-mediated transfer
 - (C) Adenovirus-mediated transfer
 - (D) Lentivirus-mediated transfer
- 8. Why is horizontal gene transfer more complex in eukaryotes than in prokaryotes?
 - (A) Prokaryotes lack membranes
 - (B) Eukaryotes have both cell and nuclear membranes
 - (C) Eukaryotes cannot recombine DNA
 - (D) Prokaryotes have plasmids
- 9. Which natural mechanism of HGT allows bacteria to take up free DNA from the environment?
 - (A) Conjugation
 - (B) Transformation
 - (C) Transduction
 - (D) Endocytosis
- 10. In vertical gene transfer via sexual reproduction, genetic variation increases mainly due to :
 - (A) Mutation only
 - (B) Mitosis
 - (C) Binary fission
 - (D) Fertilization and recombination

- 7. निम्नलिखित में से कौन-सी गैर-वायरल जीन अंतारण विधि है?
 - (A) रेट्रोवायरस-मध्यस्थित अंतरण
 - (B) लिपोसोम-मध्यस्थित अंतरण
 - (C) एडेनावायरस-मध्यस्थित अंतरण
 - (D) लेंटिवायरस-मध्ययस्थित अंतरण
 - यूकैरियोट्स में क्षैतिज जीन अंतरण प्रोकैरियोट्स की तुलना में अधिक जटिल क्यों है?
 - (A) प्रोकैरियोट्स में झिल्ली नहीं होती
 - (B) यूकैरियोट्स में कोशिका और नाभिकीय झिल्ली दोनों होती हैं
 - (C) यूकैरियोट्स डीएनए का पुनर्संयोजन नहीं कर सकते
 - (D) प्रोकैरियोट्स में प्लास्मिड होते हैं
- 9. कौन-सी प्राकृतिक HGT प्रक्रिया बैक्टीरिया को वातावरण से मुक्त डीएनए लेने देती है?
 - (A) संयुग्मन

- (B) ट्रांसफॉर्मेशन
- (C) ट्रांसडक्शन
- (D) एंडोसाइटोसिस
- यौन प्रजनन द्वारा ऊर्ध्वाधर जीन अंतरण में आनुवंशिक विविधता मुख्य रूप से किस कारण बढ़ती है?
- (A) केवल उत्परिवर्तन
- (B) मिथोसिस
- (C) द्विखंडन
- (D) निषेचन और पुनर्संयोजन

- 11. Which of the following best explains the difference between HGT and VGT?
 - (A) HGT occurs between parents and offspring, VGT between unrelated organisms
 - (B) HGT occurs between unrelated organisms, VGT between parents and offspring
 - (C) Both involve transfer only via plasmids
 - (D) Both involve entire genome transfer
- 12. Why are retroviruses commonly used in gene transfer?
 - (A) They integrate stably into the host genome
 - (B) They replicate outside the host
 - (C) They never mutate
 - (D) They target only non-dividing cells
- 13. Which of the following is the main disadvantage of microinjection?
 - (A) Cannot insert large DNA fragments
 - (B) Requires high technical skill and low efficiency
 - (C) Works only in bacteria
 - (D) Cannot target the nucleus
- 14. Which method is most suitable for generating knockout mice?
 - (A) Retrovirus-mediated transfer
 - (B) Embryonic stem cell-mediated gene transfer
 - (C) Microinjection
 - (D) Liposome-mediated transfer

- 11. HGT और VGT के बीच का सबसे अच्छा अंतर कौन बताता है?
 - (A) HGT माता-पिता और संतान में होता है, VGT असम्बन्धित जीवों में
 - (B) HGT असम्बन्धित जीवों में होता है, VGT माता-पिता ओर संतान में
 - (C) दोनों केवल प्लास्मिड द्वारा होते हैं
 - (D) दोनों पूरे जीनोम का स्थानांतरण करते हैं
- 12. जीन अंतरण में रेट्रोवायरस का उपयोग क्यों किया जाता है?
 - (A) वे मेजबान जीनोम में स्थायी रूप से एकीकृत हो जाते हैं
 - (B) वे मेजबान के बाहर प्रतिकृति बनाते हैं
 - (C) वे कभी उत्परिवर्तित नहीं होते
 - (D) वे केवल गैर-विभाजित कोशिकाओं को लक्षित करते हैं
- 13. माइक्रोइंजेक्शन की मुख्य कमी क्या है?
 - (A) बड़े डीएनए खंड नहीं डाल सकता
 - (B) उच्च तकनीकी कौशल की आवश्यकता और कम दक्षता
 - (C) केवल बैक्टीरिया में काम करता
 - (D) नाभिक को लक्षित नहीं कर सकता कौन-सी विधि नॉकआडट चूहों को उत्पन्न करने के लिए सबसे उपयुक्त है?
 - (A) रेट्रोवायरस-मध्यस्थित अंतरण
 - (B) भ्रूणीय स्टेम सेल-मध्यस्थित जीन अंतरण
 - (C) माइक्रोइंजेक्शन
 - (D) लिपोसोम-मध्यस्थित अंतरण

- 15. A scientist wants to introduce a therapeutic gene into human T-cells for long-term expression. Which method is best?
 - (A) Electroporation
 - (B) Gene gun
 - (C) Microinjection
 - (D) Retrovirus-mediated gene transfer
- 16. A bacterial strain gains antibiotic resistance by acquiring a plasmid from the environment. Which mechanism explains this?
 - (A) Transformation
 - (B) Conjugation
 - (C) Transduction
 - (D) Endocytosis.
- 17. Which method is most appropriate for inserting a large DNA fragment precisely into the genome of a mouse zygote?
 - (A) Microinjection
 - (B) Retrovirus-mediated transfer
 - (C) Transformation
 - (D) Liposome-mediated transfer
- 18. A parasite gains a metabolic gene from bacteria, enabling it to survive in humans. This is an example of :
 - (A) Vertical gene transfer
 - (B) Horizontal gene transfer
 - (C) Mutation
 - (D) Asexual reproduction
- 19. If a scientist wants to deliver CRISPR-Cas9 into plant cells, which method is most suitable?
 - (A) Gene gun (biolistics)
 - (B) Retrovirus-mediated transfer
 - (C) Endocytosis
 - (D) Microinjection

- 15. एक वैज्ञानिक लंबे समय तक अभिव्यक्ति के लिए मानव-टी-कोशिकाओं में एक चिकित्सीय जीन डालना चाहता है। कौन-सी विधि सबसे अच्छी है?
 - (A) इलेक्ट्रोपोरेशन
 - (B) जीन गन

17.

18.

- (C) माइक्रोइंजेक्शन
- (D) रेट्रोवायरस-मध्यस्थित जीन अंतरण एक बैक्टीरिया प्रजाति वातावरण से प्लास्मिड प्राप्त कर एंटीबायोटिक प्रतिरोध प्राप्त करती है। यह किस प्रक्रिया से समझाया जा सकता है?
- (A) ट्रांसफॉर्मेशन
- (B) संयुग्मन
- (C) ट्रांसडक्शन
- (D) एंडोसाइटोसिस
- चूहे के ज़ाइगोट में बड़े डीएनए खंड को सटीक रूप से डालने के लिए कौन-सी विधि सबसे उपयुक्त है?
 - (A) माइक्रोइंजेक्शन
 - (B) रेट्रोवायरस-मध्यस्थित अंतरण
 - (C) ट्रांसफॉर्मेशन
 - (D) लिपोसोम-मध्यस्थित अंतरण
 - एक परजीवी बैक्टीरिया से एक चयापचयी जीन प्राप्त करता है, जिससे वह मनुष्यों में जीवित रह सकता हैं यह किसका उदाहरण है?
 - (A) ऊर्ध्वाधर जीन अंतरण
 - (B) क्षैतिज जीन अंतरण
 - (C) उत्परिवर्तन
 - (D) अलैंगिक प्रजनन
 - यदि एक वैज्ञानिक पौधों की कोशिकाओं में CRISPR-Cas9 पहुंचाना चाहता है, तो कोन-सी विधि सबसे उपयुक्त है?
 - (A) जीन गन (बायोलिस्टिक्स)
 - (B) रेट्रोवायरस-मध्यस्थित अंतरण
 - (C) एंडोसाइटोसिस
 - (D) माइक्रोइंजेक्शन

- 20. Which process explains how human DNA could be found inside the bacterial genome of Neisseria gonorrhoeae?
 - (A) Conjugation
 - (B) Transformation from host DNA
 - (C) Retrovirus infection
 - (D) Endocytosis
- 21. Compare the amount of DNA transferred in VGT and HGT. Which statement is correct?
 - (A) Both transfer entire genome
 - (B) HGT transfers entire genome, VGT transfers few genes
 - (C) Both transfer only plasmids
 - (D) VGT transfers entire genome, HGT usually transfers few genes
- 22. Which scenario shows the greatest evolutionary advantage of HGT?
 - (A) Asexual reproduction in yeast
 - (B) Antibiotic resistance spread in bacteria
 - (C) Fertilization in humans
 - (D) Binary fission in bacteria
- 23. If embryonic stem cells are genetically modified and introduced into a blastocyst, what outcome is expected?
 - (A) All offspring are transgenic without breeding
 - (B) Only somatic cell modification
 - (C) Chimeric animals that may pass modified genes through breeding
 - (D) Failure to develop embryos

- 20. कौन-सी प्रक्रिया यह समझाती है कि Neisseria gonorrhoeae के बैक्टीरियल जीनोम में मानव डीएनए कैसे पाया जाता है?
 - (A) सयुग्मन
 - (B) होस्ट डीएनए से ट्रांसफॉर्मेशन
 - (C) रेट्रोवायरस संक्रमण
 - (D) एंडोसाइटोसिस
- 21. VGT और HGT में स्थानांतरित डीएनए की मात्रा की तुलना करें। कौन-सा कथन सही है?
 - (A) दोनों पूरा जीनोम स्थानांतरित करते हैं
 - (B) HGT पूरा जीनोम स्थानांतरित करता है, VGT आमतौर पर कुछ जीन स्थानांतरित करता है
 - (C) दोनों केवल प्लास्मिड स्थानांतरित करते हैं
 - (D) VGT पूरा जीनोम स्थानांतरित करता है, HGT कुछ जीन स्थानांतरित करता है कौन-सा परिदृश्य HGT का सबसे बड़ा विकासवादी लाभ दिखाता है?
 - (A) यीस्ट में अलैंगिक प्रजनन
 - (B) बैक्टीरिया में एंटीबायाटिक प्रतिरोध का प्रसार
 - (C) मनुष्यों में निषेचन
 - (D) बैक्टीरिया में द्विखंडन
 - यदि भ्रूणीय स्टेम कोशिकाओं को आनुवंशिक रूप से संशोधित किया जाता है और उन्हें ब्लास्टोसिस्ट में डाला जाता है, तो क्या परिणाम अपेक्षित है?
 - (A) सभी संतान बिना प्रजनन के ट्रांसजेनिक होंगी
 - (B) केवल देह कोशिका संशोधन
 - (C) काइमेरिक जानवर जो प्रजनन के माध्यम से संशोधित जीन पास कर सकते हैं
 - (D) भ्रूण का विकास विफल होना

- 24. Which statement best differentiates conjugation from transformation?
 - (A) Conjugation requires direct cell-tocell contact, transformation does not
 - (B) Conjugation is virus-mediated, transformation is plasmid-mediated
 - (C) Conjugation occurs only in eukaryotes, transformation only in prokaryotes
 - (D) Conjugation transfers entire genome, transformation only plasmids
- 25. Which method is most at risk of insertional mutagenesis due to random integration?
 - (A) Retrovirus-mediated transfer
 - (B) CRISPR-Cas9 gene editing
 - (C) Microinjection
 - (D) Transformation
- 26. What is a transgene?
 - (A) A natural host gene
 - (B) A foreign DNA sequence inserted into a host genome
 - (C) A viral genome fragment
 - (D) A protein-coding mRNA
- 27. Which bacterium is commonly used in plant transgenesis?
 - (A) Bacillus subtilis
 - (B) Mycobacterium tuberculosis
 - (C) Escherichia coli
 - (D) Agrobacterium tumefaciens
- 28. Which method involves direct injection of DNA into an embryo?
 - (A) Electroporation
 - (B) CRISPR-Cas9
 - (C) Microinjection
 - (D) Transformation

- 24. कौन-सा कथन संयुग्मन और रूपांतरण के बीच सबसे अच्छा अंतर बताता है?
 - (A) संयुग्मन के लिए कोशिका-से-कोशिका प्रत्यक्ष संपर्क आवश्यक है, रूपांतरण में नहीं
 - (B) संयुग्मन वायरस-मध्यस्थित है, रूपांतरण प्लास्मिड-मध्यस्थित है
 - (C) संयुग्मन केवल यूकैरियोट्स में होता है, रूपांतरण केवल प्रोकैरियोट्स में
 - (D) संयुग्मन पूरा जीनोम स्थानांतरित करता है, रूपांतरण केवल प्लास्मिड
- 25. कौन-सी विधि यादृच्छिक एकीकरण के कारण इनसर्शनल म्यूटाजेनेसिस के सबसे अधिक जोखिम में है?
 - (A) रेट्रोवायरस-मध्यस्थित अंतरण
 - (B) CRISPR-Csa9 जीन संपादन
 - (C) माइक्रोइंजेक्शन
 - (D) ट्रांसफॉर्मेशन
- 26. ट्रांसजीन क्या है?
 - (A) एक प्राकृतिक होस्ट जीन
 - (B) एक विदेशी डीएनए अनुक्रम जिसे होस्ट जीनोम में डाला गया है
 - (C) एक वायरल जीनोम टुकड़ा
 - (D) एक प्रोटीन-कोडिंग mRNA
 - पौधों में ट्रांसजीनसिस के लिए कौन-सा जीवाणु सामान्यतः प्रयोग होता है?
 - (A) बैसिलस सबटिलिस
 - (B) माइकोबैक्टीरियम ट्यूबर कुलोसिस
 - (C) ऐशेटिशिया कोलाई
 - (D) एग्रोबैक्टीरियम ट्यूमेफैसिएन्स कौन-सी विधि में डीएनए को सीधे भ्रूण में इंजेक्ट किया जाता है?
 - (A) इलेक्ट्रोपोरेशन
 - (B) CRISPR-Cas9
 - (C) माइक्रोइंजेक्शन
 - (D) ट्रोसफॉर्मेशन

29.	Transg	genic mice are widel	ly used for :	29.	ट्रांसजे	निक चूहे मुख्यतः किसके लिए प्रयोग होते है?
	(A)	Producing milk pr	oteins		(A)	दूध प्रोटीन उत्पादन
	(B)	Modeling human	diseases		(B)	मानव रोगों का मॉडल बनाना
	(C)	Generating silk pr	oteins		(C)	रेशम प्रोटीन उत्पादन
	(D)	Controlling insect	pests		(D)	कीट नियंत्रण
30.	Foot-a	nd-Mouth Disease is	s caused by :	30.	फुट-ए	<mark>रं</mark> ड–माउथ रोग किसके कारण होता है?
	(A)	A bacterium (E	3) A virus		(A)	जीवाणु (B) विषाणु
	(C)	A protozoan (D)) A fungus		(C)	प्रोटोज़ोआ (D) कवक [ँ]
31.	Theile	riosis is transmitted	by:	31.	थिलेरि	योसिस किसके द्वारा फैलता है?
	(A)	Mosquitoes (E	3) Ticks		(A)	मच्छर (B) किलनी
	(C)	Fleas (C)) Flies		(C)	पिस्सू (D) मक्खियाँ
32.	Bt con	n is resistant to inse	cts because :	32.	Bt मव	का कीटों के प्रति प्रतिरोधी क्यों है?
	(A)	It produces a bact	erial toxin		(A)	यह एक जीवाणु विष बनाता है
	(B)	It produces antifur	ngal compounds		(B)	यह एंटीफंगल यौगिक बनाता है
	(C)	It undergoes faste	r growth		(C)	यह तेजी से बढ़ता है
	(D)	It has thicker cell v	walls		(D)	इसकी कोशिका दीवारें मोटी होती हैं
33.	Why i	s CRISPR-Cas9 c	onsidered more	33.	CRIS	PR-Cas9 को एग्रोबैक्टीरियम-मध्यस्थित
	precis	se than Agrobacte	erium-mediated		रूपांत	रण से अधिक सटीक क्यों माना जाता
	transfo	ormation?			है?	
	(A)	It integrates genes	s randomly		(A)	यह जीन को यादृच्छिक रूप से जोड़ता है
	(B)	It allows targ	eted genome		(B)	यह लक्षित जीनोम संपादन की अनुमति
		editing				देता है
	(C)	It uses viral vector	rs		(C)	यह वायरल वेक्टर का उपयोग करता है
	(D)	It produces protein	ns directly		(D)	यह सीधे प्रोटीन बनाता है
34.	Which	n factor influence	s the level of	34.	• •	ोन अभिव्यक्ति के स्तर को कौन प्रभावित
	transg	ene expression?			करता	* '
	(A)	Genome size only	/		(A)	केवल जीनोम का आकार
	(B)	Host gender			(B)	होस्ट का लिंग
	(C)	Temperature alone	е		(C)	केवल तापमान
	(D)	Promoter strength	and insertion site		(D)	प्रोमोटर की शक्ति और एकीकरण स्थल
35.	Why a	re pigs preferred m	odels for human	35.	मानव	रोग अनुसंधान के लिए सूअर चूहों से
	diseas	e research compare	ed to mice?		बेहतर	मॉडल क्यों माने जाते हैं?
	(A)	Pigs have smaller	genomes		(A)	सूअरों का जीनोम छोटा होता है
	(B)	Pigs have physi	ology closer to		(B)	सूआरों की शारीरिक संरचना मनुष्यों
		humans				के अधिक निकट होती है
	(C)	Pigs reproduce fa	ster than mice		(C)	सूअर चूहों से तेजी से प्रजनन करते हैं
	(D)	Pigs are resistant	to viruses		(D)	सूअर विषाणुओं के प्रतिरोधी होते हैं
Z010	108T-A	/36	(9)		[P.T.O.]

36.	Whic	h strategy best prevents coccidiosis	36.	पिल्ट्री फार्म में कॉक्सीडियोसिस की रोकने की
	in pol	ultry farms?		सबसे अच्छी रणनीति कौन–सी है?
	(A)	Tick control		(A) किलनी नियंत्रण
	(B)	Genetic modification		(B) आनुवंशिक संशोधन
	(C)	Antibiotics only		(C) केवल एंटीबायोटिक्स
	(D)	Vaccination and hygiene		(D) टीकाकरण और स्वच्छता
37.	Trypa	anosomiasis in animals is mainly	37.	जानवरों में ट्रिपैनोसोमायसिस मुख्यतः किससे
	transı	mitted by :		फैलता है?
	(A)	Tsetse flies (B) Fleas		(A) त्सेत्से मक्खियाँ (B) पिस्सू
	(C)	Mosquitoes (D) Lice		(C) मच्छर (D) जूँ
38.	A dair	ry farmer wants disease-resistant cows.	38.	एक डेयरी किसान रोग-प्रतिरोधी गार्ये चाहता
	Whic	h biotechnology approach is most		है। कौन-सा जैव-प्रौद्योगिकी दृष्टिकोण सबसे
	suital	ole?		उपयुक्त है?
	(A)	Selective breeding only		(A) केवल चयनात्मक प्रजनन
	(B)	Transgenesis introducing		(B) प्रतिरोध जीन प्रविष्ट करने वाला
		resistance genes		ट्रांसजीनिसिस
	(C)	High-protein diet		(C) उच्च प्रोटीन आहार
	(D)	Vaccination only		(D) केवल टीकाकरण
39.	A res	searcher wants to study Alzheimer's	39.	एक शोधकर्ता अल्ज़ाइमर रोग का अध्ययन
	disea	se in a mammalian system. Which		स्तनधारी प्रणाली में करना चाहता है। कौन-सा
	anima	al is best?		जानवर सबसे उपयुक्त है?
	(A)	Transgenic sheep		(A) ट्रांसजेनिक भेड़
	(B)	Transgenic pigs		(B) ट्रांसजेनिक सूअर
	(C)	Transgenic birds		(C) ट्रांसजेनिक पक्षी
	(D)	Transgenic mice		(D) ट्रांसजेनिक चूहे
40.	lf a p	parasite causes lymph node swelling	40.	यदि कोई परजीवी मवेशियों में लिम्फ नोड
	and a	nemia in cattle, the most likely disease		सूजन और एनीमिया पैदा करता है, तो सबसे
	is:			संभावित रोग कौन–सा है?
	(A)	FMD		(A) FMD (मुँह और खुर रोग)
	(B)	Trypanosomiasis		(B) ट्रिपैनोसोमायसिस
	(C)	Theileriosis		(C) थिलेरियोसिस
	(D)	Coccidiosis		(D) कॉक्सीडियोसिस
Z010	108T-A	N/36 (1)	0)	

एक पोल्ट्री फार्म में खूनी दस्त देखा गया। 41. In a poultry farm, bloody diarrhea is 41. दीर्घकालिक नियंत्रण के लिए कौन-सा जैव observed. Which biotechnology solution प्रौद्योगिकी समाधान सहायक होगा? helps long-term control? केवल संक्रमित पक्षियों को मारना Culling infected birds only (A) (A) आनुवंशिक रूप से प्रतिरोधी मुर्गियों Developing genetically resistant (B) (B) का विकास chickens चक्रीय चराई (C) Rotational grazing (C) (D) टिक नियंत्रण (D) Tick control जीनोट्रांसप्लांटेशन अनुसंधान के लिए कौन-सा 42. For xenotransplantation research, which 42. ट्रांसजेनिक पशु सबसे मूल्यवाल है? transgenic animal is most valuable? (A) Mouse (B) Goat (A) चूहा (B) बकरी (D) (C) (D) सूअर गाय Pig Cow (C) ''ट्रांसजीन पैकेज'' के लिए सही संयोजन कौन-सा 43. Which combination is correct for "transgene 43. हे? package"? जीन + प्रमोटर + चयन योग्य (A) (A) Gene + promoter + selectable मार्कर जीन + प्लास्मिड + राइबोसोम (B) Gene + plasmid + ribosome (B) RNA + tRNA + कोडॉन RNA + tRNA + codon (C) (C) प्रोटीन + एंटीबॉडी + मार्कर (D) Protein + antibody + marker (D) यदि मच्छरों को आनुवंशिक रूप से संशोधित 44. If mosquitoes are genetically modified to 44. किया जाता है ताकि उनकी संतानों का जीवित reduce offspring survival, this is an example रहना कम हो, तो यह किसका उदाहरण है? of: माइक्रोइंजेक्शन (A) Microinjection (A) ट्रांसजीनिसिस के माध्यम से कीट नियंत्रण (B) Pest control via transgenesis (B) प्रोटीन थेरेपी (C) Protein therapy (C) इलेक्ट्रोपोरेशन (D) Electroporation (D) माइक्रोइंजेक्शन और इलेक्ट्रोपोरेशन की तुलना 45. Compare 45. microinjection and करें। कौन-सा कथन सही है? electroporation. Which is TRUE? दोनों में बैक्टीरियल वाहक की (A) (A) Both require bacterial carriers आवश्यकता होती है दोनों केवल पौधों में उपयोग किए जाते हैं (B) Both are only used in plants (B) दोनों जीन को यादृच्छिक रूप से एकीकृत (C) (C) Both integrate genes randomly करते हैं

Microinjection inserts DNA directly;

electroporation uses electric

(D)

fields

(D)

माइक्रोइंजेक्शन DNA के। सीधे प्रविष्ट

करता है; इलेक्ट्रोपोरेशन विद्युत क्षेत्र

का उपयोग करता है

- 46. Which factor differentiates FMD from Theileriosis?
 - (A) FMD is viral, Theileriosis is protozoan
 - (B) Both are protozoan diseases
 - (C) Both are bacterial diseases
 - (D) FMD is fungal, Theileriosis is viral
- 47. Why might transgenic goats be chosen over cows for pharmaceutical protein production?
 - (A) Goats have shorter gestation and lower maintenance costs
 - (B) Goats cannot express proteins in milk
 - (C) Goats are disease resistant
 - (D) Goats produce more milk than cows
- 48. Which ethical concern is most unique to transgenic insects?
 - (A) Animal suffering
 - (B) Spread of modified genes to wild populations
 - (C) Use in drug testing
 - (D) Food safety risks
- 49. A farmer uses insecticide-treated targets to reduce disease spread. This is applied for :
 - (A) FMD
 - (B) Trypanosomiasis
 - (C) Coccidiosis
 - (D) Theileriosis
- 50. If a transgene integrates at a random site, 50. what risk increases?
 - (A) Controlled expression
 - (B) Insertional mutagenesis
 - (C) Enhanced protein production
 - (D) Disease resistance

- कौन-सा कारक FMD और थिलेरियोसिस को अलग करता है?
- (A) FMD एक वायरल रोग है, थिलेरियोसिस प्रोटोजोआ रोग है
- (B) दोनों प्रोटोज़ोआ रोग हैं

47.

48.

49.

- (C) दोनों बैक्टीरियल रोग हैं
- (D) FMD फंगल है, थिलेरियोसिस वायरल है औषधीय प्रोटीन उत्पादन के लिए ट्रांसजेनिक बकरियों को गायों पर क्यों पर क्यों चुना जा सकता है?
- (A) बकरियों की गर्भाविध छोटी होती है और रखरखाव लागत कम होती है
- (B) बकरियाँ दूध में प्रोटीन व्यक्त नहीं कर सकतीं
- (C) बकरियाँ रोग प्रतिरोधी होती हैं
- (D) बकरियाँ गायों से अधिक दूध देती हैं ट्रांसजेनिक कीड़ों से सबसे विशिष्ट नैतिक चिंता कौन-सी है?
- (A) पशु पीड़ा
- (B) संशोधित जीन का जंगली जनसंख्या में फैलना
- (C) दवा परीक्षण में उपयोग
- (D) खाद्य सुरक्षा जोखिम
- एक किसान रोग फैलाव को कम करने के लिए कीटनाशक-उपचारित लक्ष्य का उपयोग करता है। यह किसके लिए लागू है?
- (A) FMD
- (B) ट्रिपैनोसोमायसिस
- (C) कॉक्सीडियोसिस
- (D) थिलेरियोसिस
- यदि कोई ट्रांसजीन यादृच्छिक स्थान पर एकीकृत हो जाता है, तो किस जोखिम में वृद्धि होती है?
- (A) नियंत्रित अभिव्यक्ति
- (B) इनसर्शनल म्यूटाजेनेसिस
- (C) प्रोटीन उत्पादन में वृद्धि
- (D) रोग प्रतिरोधकता

Z010108T-A/36

51.	Which	reproductive biotechnology involves	51.	कौन–सी प्रजनन जैव–प्रौद्योगिकी में वीर्य को
	direct	deposition of semen into the female		सीधे मादा प्रजनन तंत्र में डाला जाता
	reproc	ductive tract?		है ?
	(A)	Cloning		(A) क्लोनिंग
	(B)	Artificial insemination		(B) कृत्रिम गर्भाधान
	(C)	Embryo transfer		(C) भ्रूण स्थानांतरण
	(D)	Parthenogenesis		(D) पार्थेनोजेनेसिस
52.	Dolly t	he sheep was the first mammal cloned	52.	डॉली भेड़ को किस तकनीक द्वारा क्लोन किया
	by wh	ich technique?		गया था?
	(A)	Embryo splitting		(A) भ्रूण विभाजन
	(B)	Somatic cell nuclear transfer (SCNT)		(B) सोमैटिक सेल न्यूक्लियर ट्रांसफर
	(C)	Artificial insemination		(C) कृत्रिम गर्भाधान
	(D)	Embryo transfer		(D) भ्रूण स्थानांतरण
53.	Embr	yonic stem cells are derived from	53.	भ्रूणीय स्टेम कोशिकाएँ ब्लास्टोसिस्ट की किस
	which	structure of the blastocyst?		संरचना से प्राप्त होती हैं?
	(A)	Trophoblast		(A) ट्रांफोबलास्ट
	(B)	Zona pellucida		(B) जोना पेल्युसिडा
	(C)	Inner cell mass		(C) आंतरिक कोशिका द्रव्यमान
	(D)	Morula		(D) मॉरूला
54.	Which	n hormone is commonly used for	54.	भ्रूण स्थानांतरण तकनीक में सुपरओव्यूलेशन के
	super	ovulation in embryo transfer		लिए सामान्यतः कौन-सा हार्मोन उपयोग किया
	techno	ology?		जाता है?
	(A)	Oxytocin		(A) ऑक्सीटोसिन
	(B)	FSH/PMSG		(B) एफएसएच ∕पी एम एस जी
	(C)	Insulin		(C) इंसुलिन
	(D)	Cortisol		(D) कॉर्टिसोल
55.	iPSC	s are created by reprogramming	55.	iPSCs को सोमैटिक कोशिकाओं को पुनः प्रोग्राम
	somat	ic cells using:		करके किसके प्रयोग से बनाया जाता है?
	A)	Growth factors		(A) ग्रोथ फैक्टर्स
	B)	Transcription factors		(B) ट्रांसक्रिप्शन फैक्टर्स
	C)	Antibodies		(C) एंटीबॉडीज
	D)	Hormones		(D) हार्मोन

(13)

[P.T.O.]

Z010108T-A/36

- 56. Why is artificial insemination considered superior to natural mating in livestock? It eliminates female fertility issues It prevents multiple births (B) (C) It increases gestation length It allows disease-free semen (D) transfer and use of superior germplasm 57. The major limitation of SCNT cloning is: (A) High genetic variation (B) Epigenetic abnormalities and low efficiency It cannot be applied to mammals (C) (D) It always produces male offspring 58. In conservation biology, cryopreserved embryos or semen are useful because :
- (A) They eliminate the need for hormones
 (B) They permit long-term storage and genetic preservation
 - (C) They only work in cattle, not wildlife
- (D) They reduce gestation period59. Which stem cell type is pluripotent and can differentiate into all three germ layers?
 - (A) Satellite cells
 - (B) Hematopoietic stem cells
 - (C) Embryonic stem cells
 - (D) Neural stem cells
- 60. Which of the following is an ethical concern with embryonic stem cell use?
 - (A) Low differentiation ability
 - (B) Requirement of animal serum
 - (C) Destruction of human embryos
 - (D) Poor genetic stability

- 56. पशुधन में कृत्रिम गर्भाधान को प्राकृतिक प्रजनन से श्रेष्ठ क्यों माना जाता है?
 - (A) यह मादा की प्रजनन क्षमता की समस्या को समाप्त करता है
 - (B) यह बहु-गर्भधारण को रोकता है
 - (C) यह गर्भावस्था की अवधि बढ़ाता है
 - (D) यह रोग-मुक्त वीर्य के स्थानांतरण और उत्तम नस्ल के उपयोग की अनुमति देता है
- 57. SCNT क्लोनिंग की मुख्य सीमा क्या है?
 - (A) उच्च आनुवंशिक विविधता
 - (B) एपिजेनेटिक असामान्यताएँ और कम दक्षता
 - (C) इसे स्तनधारियों पर लागू नहीं किया जा सकता
 - (D) यह हमेशा नर संतान पैदा करता है संरक्षण जीवविज्ञान में क्रायो-प्रिज़र्व्ड भ्रूण या वीर्य उपयोगी हैं क्योंकि :
 - (A) ये हार्मोन की आवश्यकता समाप्त कर देते हैं
 - (B) ये दीर्घकालिक भंडारण और आनुवंशिक संरक्षण की अनुमति देते हैं
 - (C) ये केवल गायों में काम करते हैं, वन्यजीवों में नहीं
 - (D) ये गर्भधारण अविध को कम करते हैं कौन-सी स्टेम कोशिका ज़ुरिपोटेंट होती है और तीनों जर्म लेयर में विभेदन कर सकती है?
 - (A) सैटेलाइट कोशिकाएँ
 - (B) हेमाटोपोएटिक स्टेम कोशिकाएँ
 - (C) भ्रूणीय स्टेम कोशिकाएँ
 - (D) न्यूरल स्टेम कोशिकाएँ भ्रूणीय स्टेम कोशिकाओं के उपयोग से जुड़ी प्रमुख नैतिक चिंता क्या है?
 - (A) कम विभेदन क्षमता
 - (B) पशु सीरम की आवश्यकता
 - (C) मानव भ्रूण का नष्ट होना
 - (D) खराब आनुवंशिक स्थिरता

59.

- 61. A farmer wants to quickly multiply his elite cattle herd. Which biotechnology should he choose?
 - (A) Artificial insemination only
 - (B) Embryo transfer techniques
 - (C) Microinjection
 - (D) Parthenogenesis
- 62. A patient with spinal cord injury is considered for stem cell therapy. Which stem cell type is most relevant?
 - (A) Adult stem cells (neural progenitors)
 - (B) Erythrocytes
 - (C) Cancer stem cells
 - (D) Plant stem cells
- 63. Which technique would best help conserve an endangered deer species with very few females available for breeding?
 - (A) Superovulation and embryo transfer to surrogate females
 - (B) Selective killing of diseased males
 - (C) High-protein diet
 - (D) Antibiotic therapy
- 64. If researchers want to study gene function by creating knock-out mice, which stem cell type is primarily used?
 - (A) Embryonic stem cells
 - (B) Hematopoietic stem cells
 - (C) iPSCs only
 - (D) Mesenchymal stem cells
- 65. Which method allows international transport of superior livestock genetics with minimal disease risk?
 - (A) Transport of live bulls
 - (B) Transport of frozen embryos/semen
 - (C) Transport of placental tissues
 - (D) Transport of oocytes in culture

- 61. एक किसान अपने श्रेष्ठ गायों के झुंड को तेजी से बढ़ाना चाहता है। उसे कौन-सी जैव-प्रौद्योगिकी चूननी चाहिए।
 - (A) केवल कृत्रिम गर्भाधान
 - (B) भ्रूण स्थानांतरण तकनीक
 - (C) माइक्रोइंजेक्शन
 - (D) पार्थेनोजेनेसिस

63.

64.

- रीढ़ की हडड़ी की चोट वाले रोगी के लिए स्टेम सेल उपचार पर विचार किया जा रहा है। कौन-सी स्टेम कोशिका सबसे उपयुक्त है?
- (A) वयस्क स्टेम कोशिकाएँ (न्यूरल प्रोजेनिटर)
- (B) लाल रक्त कोशिकाएँ
- (C) कैंसर स्टेम कोशिकाएँ
- (D) पादम स्टेम कोशिकाएँ
- यदि किसी लुप्तप्राय हिरण प्रजाति में मादाओं की संख्या बहुत कम है, तो किस तकनीक से संरक्षण बेहतर होगा?
 - (A) सुपरओव्यूलेशन और श्रृण स्थानांतरण सरोगेट मादाओं में
 - (B) रोगग्रस्त नर का चयनात्मक वध
 - (C) उच्च प्रोटीन आहार
 - (D) एंटीबायोटिक थेरेपी
 - यदि शोधकर्ता नॉक-आउट चूहों का निर्माण करके जीन की क्रिया का अध्ययन करना चाहते हैं, तो कौन-सी स्टेम कोशिका का उपयोग किया जाता है?
 - (A) भ्रूणीय स्टेम कोशिकाएँ
 - (B) हेमाटोपोएटिक स्टेम कोशिकाएँ
 - (C) केवल iPSCs
 - (D) मेसेनकाइमल स्टेम कोशिकाएँ
 - श्रेष्ठ पशुधन के जर्मप्लाज्म को अंतरराष्ट्रीय स्तर पर न्यूनतम रोग जोखिम के साथ पहुँचाने का सबसे सुरक्षित तरीका कौन-सा है?
 - (A) जीवित सांडों का परिवहन
 - (B) जमे हुए भ्रूण/वीर्य का परिवहन
 - (C) प्लेसेंटा ऊतक का परिवहन
 - (D) संवर्धन में डिंबाणु का परिवहन

- 66. Differentiate between AI and ET:
 - (A) Al requires embryo freezing, ET does not
 - (B) Al transfers semen, ET transfers fertilized embryos
 - (C) Al produces clones, ET does not
 - (D) Al uses surrogates, ET never does
- 67. In SCNT, if the donor somatic cell nucleus has epigenetic modifications, what problem may arise?
 - (A) Increased fertility in clones
 - (B) Improper gene expression and abnormal development
 - (C) Enhanced pluripotency
 - (D) Faster embryo growth
- 68. Which factor explains why iPSCs are ethically preferred over ESCs?
 - (A) iPSCs cannot differentiate
 - (B) iPSCs are derived without embryo destruction
 - (C) iPSCs have higher mutation rate
 - (D) iPSCs come only from cord blood
- 69. Why are pigs often considered for xenotransplantation research over cows?
 - (A) Similar organ size and physiology to humans
 - (B) Shorter gestation length than cows
 - (C) More milk production
 - (D) Lower feed requirements

- 66. AI और ET में क्या अंतर है?
 - (A) AI में भ्रूण जमाना आवश्यक है, ET में नहीं
 - (B) Al में वीर्य का स्थानांतरण होता है, ET में निषेचित भ्रूण का स्थानांतरण होता है
 - (C) Al क्लोन पैदा करता है, ET नहीं
 - (D) Al सरोगेट का प्रयोग करता है, ET कभी नहीं
- 67. SCNT में यदि दाता सोमैटिक कोशिका नाभिक में एपिजेनेटिक संशोधन हों, तो क्या समस्या उत्पन्न हो सकती है?
 - (A) क्लोन में प्रजनन क्षमता बढ़ाना
 - (B) अनुचित जीन अभिव्यक्ति और असामान्य विकास
 - (C) प्लुरिपोटेंसी में वृद्धि
 - (D) तेज़ भ्रूण विकास
 - iPSCs को नैतिक रूप से ESCs बेहतर क्यों माना जाता है?
 - (A) iPSCs विभेदन नहीं कर सकते
 - (B) iPSCs भ्रूण नष्ट किए बिना प्राप्त किए जाते हैं
 - (C) iPSCs में उच्च उत्परिवर्तन दर होती है
 - (D) iPSCs केवल कॉर्ड ब्लड से आते हैं सूअर को अक्सर गाय की तुलना में ज़ेनोट्रांसप्लांटेशन अनुसंधान के लिए क्यों चुना जाता है?
 - (A) उनका अंग आकार और शरीर क्रिया विज्ञान मनुष्यों से मिलता-जुलता है
 - (B) उनका गर्भधारण काल गायों से छोटा है
 - (C) वे अधिक दूध उत्पादन करते हैं
 - (D) उनका चारा कम लगता है

Z010108T-A/36

68.

- 70. A wildlife conservationist argues that embryo transfer is better than artificial insemination for endangered species. Which reasoning is valid?
 - (A) ET allows multiplication from a limited number of elite females
 - (B) ET requires no synchronization
 - (C) ET produces only male offspring
 - (D) ET eliminates the need for semen collection
- 71. Which advantage does artificial insemination provide in animal propagation?
 - (A) Ensures random mating
 - (B) Prevents genetic improvement
 - (C) Allows use of superior male germplasm widely
 - (D) Decreases reproductive efficiency
- 72. Which technique is most effective for conserving endangered animal species?
 - (A) Selective breeding only
 - (B) Embryo transfer and cryopreservation
 - (C) Random mating
 - (D) Crossbreeding with domestic animals
- 73. Which is a key ethical concern in stem cell technology?
 - (A) High milk yield
 - (B) Use of embryonic sources
 - (C) Disease diagnosis
 - (D) Artificial insemination
- 74. Animal cloning by somatic cell nuclear transfer (SCNT) primarily helps in :
 - (A) Producing hybrid species
 - (B) Generating genetically identical animals
 - (C) Random genetic variation
 - (D) Controlling viral infections

- 70. एक संरक्षण वैज्ञानिक कहता है कि लुप्तप्राय प्रजातियों में भ्रूण स्थानांतरण, कृत्रिम गर्भाधान से बेहतर है। सही कारण कौन–सा है?
 - (A) ET सीमित संख्या में श्रेष्ठ मादाओं से गुणन की अनुमति देता है
 - (B) ET में समकालिकता (Synchronization) की आवश्यकता नहीं होती
 - (C) ET केवल नर संतान पैदा करता है
 - (D) ET में वीर्य संग्रह की आवश्यकता नहीं होती
- 71. पशु संवर्धन में कृत्रिम गर्भाधान कौन-सा लाभ प्रदान करता है?
 - (A) याद्रच्छिक प्रजनन सुनिश्चित करता है
 - (B) आनुवंशिक सुधार को रोकता है
 - (C) श्रेष्ठ नर जर्मप्लाज्म का व्यापक उपयोग संभव बनाता है
 - (D) प्रजनन क्षमता को कम करता है लुप्तप्राय पशु प्रजातियों को संरक्षित करने के लिए कौन-सी तकनीक सबसे प्रभावी है?
 - (A) केवल चयनात्मक प्रजनन
 - (B) भ्रूण स्थानांतरण और क्रॉयोप्रिज़र्वेशन
 - (C) यादृच्छिक प्रजनन
 - (D) घरेलू पशुओं के साथ क्रासब्रीडिंग स्टेम सेल प्रौद्योगिकी में मुख्य नैतिक चिंता कौन-सी है?
 - (A) अधिक दूध उत्पादन
 - (B) भ्रूण स्त्रोतों का उपयोग
 - (C) रोग निदान
 - (D) कृत्रिम गर्भाधान
 - सोमैटिक सेल न्यूक्लियर ट्रांसफर द्वारा पशु क्लोनिंग मुख्य रूप से किसें सहायक है?
 - (A) संकर प्रजातियाँ उत्पन्न करने में
 - (B) आनुवंशिक रूप से समान पशु उत्पन्न करने में
 - (C) यादृच्छिक आनुवंशिक विविधता में
 - (D) वायरल संक्रमणों को नियंत्रित करने में

Z010108T-A/36 (17) [P.T.O.]

72.

73.

75.	Which	n application of stem cell technology	75.	पुनर्जनन चिकित्सा में स्टेम सेल प्रौद्योगिकी का
	is mo	st relevant to regenerative medicine?		कौन-सा अनुप्रयोग सबसे प्रासंगिक है?
	(A)	Vaccine development		(A) वैक्सीन विकास
	(B)	Tissue and organ repair		(B) ऊतक और अंगों की मरम्मत
	(C)	Increasing animal fertility		(C) पशुओं की प्रजनन क्षमता बढ़ाना
	(D)	Food preservation		(D) खाद्य संरक्षण
76.	What	is gene therapy?	76.	जीन थेरेपी क्या है?
	(A)	Use of drugs to treat infection		(A) संक्रमण के इलाज के लिए दवा का
	(B)	Dietary modification		उपयोग
	(C)	Surgery to remove diseased		(B) आहार में बदलाव
		tissue		(C) रोगी ऊतक को हटाने के लिए शल्य
	(D)	Introduction, removal, or		चिकित्सा
		modification of genes to treat		(D) रोग के इलाज के लिए जीन को जोड़ना,
		disease		हटाना या संशोधित करना
77.	Which	n type of gene therapy is heritable?	77.	कौन-सी जीन थेरेपी वंशानुगत होती है?
	(A)	Somatic (B) Germline		(A) सोमैटिक (B) जर्मलाइन
	(C)	Ex vivo (D) All of the above		(C) एक्स विवो (D) उपरोक्त सभी
78.	Which	n vector is most commonly used for	78.	उच्च-कुशलता वाली जीन डिलीवरी के सबसे अधि
	high-e	efficiency gene delivery?		ाक उपयोग किया जाने वाला वेक्टर कौन–सा है?
	(A)	Viral vectors		(A) वायरल वेक्टर
	(B)	Liposomes		(B) लिपोसोम
	(C)	Naked DNA		(C) नग्न डीएनए
	(D)	Polymer nanoparticles		(D) पॉलीमर नैनोपार्टिकल
79.	Whic	h of the following is a molecular	79.	निम्न में से कौन-सा आणविक इंजीनियरिंग
	engin	eering approach?		दृष्टिकोण है?
	(A)	Recombinant protein production		(A) पुनः संयोजित प्रोटीन उत्पादन
	(B)	CRISPR-Cas9 editing		(B) CRISPR-Cas9 संपादन
	(C)	RNA interference		(C) RNA हस्तक्षेप
	(D)	All of the above		(D) उपरोक्त सभी
80.	Soma	tic gene therapy affects :	80.	सोमैटिक जीन थेरेपी किसे प्रभावित करती है?
	(A)	Future generations		(A) भविष्य की पीढ़ियों को
	(B)	Only the treated individual		(B) केवल उपचारित व्यक्ति को
	(C)	Both treated and offspring		(C) दोनों, उपचारित और संतान को
	(D)	Entire population		(D) पूरी आबादी को
Z010	108T-A	/36 (1)	8)	

81.	Ex vi	vo gene therapy involves :	81.	एक्स वि	वो जीन थेरेपी में क्या शामिल है?
	(A)	Direct injection into the body		(A)	शरीर में सीधे इंजेक्शन
	(B)	Using antibiotics		(B)	एंटीबायोटिक्स का उपयोग
	(C)	Eating genetically modified		(C)	आनुवंशिक रूप से संशोधित भोजन
	` ,	food			का सेवन
	(D)	Modifying cells outside the body		(D)	शरीर के बाहर कोशिकाओं को संशोधित
	` ,	and reintroducing them			करना और पुनः प्रत्यारोपण करना
82.	Which	n CRISPR component directs Cas9 to	82.	कौन–सा	CRISPR घटक Cas9 को लक्षित DNA
		rget DNA?		पर निर्दे	शित करता है?
	(A)	DNA polymerase		(A)	DNA पॉलीमरेज़
	(B)	Guide RNA (gRNA)		(B)	गाइड RNA (gRNA)
	(C)	Reverse transcriptase		(C)	रिवर्स ट्रांसक्रिप्टेज
	(D)	Plasmid backbone		(D)	प्लास्मिड बैकबोन
83.	Which	h disease can be treated with gene	83.	कौन-सी	बीमारी संशोधित T-कोशिकाओं के उपयोग
	thera	by using modified T-cells?		से जीन	थेरेपी द्वारा इलाज की जा सकती है?
	(A)	Diabetes		(A)	मधुमेह
	(B)	Cancer		(B)	केंस र
	(C)	Hypertension		(C)	उच्च रक्तचाप
	(D)	Tuberculosis		(D)	तपेदिक
84.	Main	limitation of viral vectors is :	84.	वायरल	वेक्टर की मुख्य सीमा क्या है?
	(A)	Low efficiency		(A)	कम दक्षता
	(B)	Cost-effectiveness		(B)	लागत-प्रभावशीलता
	(C)	Cannot enter cells		(C)	कोशिकाओं में प्रवेश नहीं कर सकते
	(D)	Immunogenicity and insertional		(D)	इम्यूनोजेनेसिटी और इंसर्शनल
		mutagenesis			म्यूटैजनसिस
85.	RNA	interference works by :	85.	RNA हर	तक्षेप किस प्रकार कार्य करता है?
	(A)	Blocking transcription		(A)	ट्रांसक्रिप्शन को ब्लॉक करना
	(B)	Degrading target mRNA		(B)	लक्षित mRNA को नष्ट करना
	(C)	Replicating DNA		(C)	DNA को दोहराना
	(D)	Enhancing protein translation		(D)	प्रोटीन अनुवाद को बढ़ाना
86.	Lentiv	riral vectors can infect :	86.	लेन्टिवाय	रल वेक्टर किसे संक्रमित कर सकते हैं?
	(A)	Only dividing cells		(A)	केवल विभाजित कोशिकाएँ
	(B)	Only non-dividing cells		(B)	केवल गैर-विभाजित कोशिकाएँ
	(C)	Both dividing and non-dividing		(C)	दोनों, विभाजित और गैर-विभाजित
		cells			कोशिकाएँ
	(D)	None of the above		(D)	उपरोक्त में से कोई नहीं
Z010	108T-A	J36 (19)		[P.T.O.]
			•		[1.1.0.]

87.		mbinant insulin production is an ole of :	87.	पुनःसंयोजित इंसुलिन उत्पादन किसका उदाहरण है?
	(A)	Molecular engineering		^{७.} (A) आणविक इंजीनियरिंग
	(B)	CRISPR gene editing		(B) CRISPR जीन संपादन
	(C)	Viral infection		(C) वायरल संक्रमण
	(D)	Traditional therapy		(D) पारंपरिक चिकित्सा
88.		n risk of germline editing is :	88.	जर्मलाइन संपादन का मुख्य जोखिम क्या है?
	(A)	Temporary gene expression		(A) अस्थायी जीन अभिव्यक्ति
	(B)	Inheritable off-target mutations		(B) वंशानुगत ऑफ-टारगेट म्यूटेशन
	(C)	Cost reduction		(C) लागत में कमी
	(D)	Easier therapy delivery		(D) आसान थेरेपी डिलीवरी
89.	Comp	are viral and non-viral vectors. Which	89.	वायरल और गैर-वायरल वेक्टर की तुलना
	is TRU	JE?		करें। कौन-सा सही है?
	(A)	Viral vectors are safer than		(A) वायरल वेक्टर गैर-वायरल से अधिक
		non-viral		सुरक्षित हैं
	(B)	Non-viral vectors have lower		(B) गैर-वायरल वेक्टर की दक्षता कम होती
		efficiency but less immunogenicity		है लेकिन कम इम्यूनोजेनिक होते हैं
	(C)	Both integrate genes randomly in		(C) दोनों जीन को समान रूप से यादृच्छिक
		same way		रूप से एकीकृत करते हैं
	(D)	Only non-viral vectors can infect		(D) केवल गैर-वायरल वेक्टर ही मानव को
		humans		संक्रमित कर सकते हैं
90.	Why i	s CRISPR preferred in human gene	90.	मानव जीन संपादन में CRISPR क्यों पसंद
	editing	g?		किया जाता है?
	(A)	Cheaper than drugs		(A) दवाओं की तुलना में सस्ता
	(B)	Precise targeting and minimal off-		(B) सटीक लक्ष्यीकरण और न्यूनतम
		target effects		ऑफ-टारगेट प्रभाव
	(C)	Does not require lab equipment		(C) लैब उपकरण की आवश्यकता
	(D)	Works without DNA Parasitic		नहीं
		infections		(D) DNA के बिना काम करता है
91.	Off-ta	arget mutations can result	91.	ऑफ-टारगेट म्यूटेशन का परिणाम क्या हो
	in :			सकता है?
	(A)	Unintended gene disruption		(A) अनपेक्षित जीन विघटन
	(B)	Improved therapy efficiency		(B) थेरेपी दक्षता में सुधार
	(C)	Faster healing		(C) तेजी से उपचार
	(D)	Reduced cost		(D) लागत में कमी
Z010	108T-A	/36 (20	0)	

92.	•	germline gene therapy ethically	92.		न जीन थेरेपी नैतिक रूप से विवादास्पद
	controv	ersial?		क्यों है?	
	(A)	Expensive procedure		(A)	महंगा प्रक्रिया
	(B)	Changes are heritable and may		(B)	परिवर्तन वंशानुगत हैं और भविष्य की
		affect future generations			पीढ़ियों को प्रभावित कर सकते हैं
	(C)	Cannot cure diseases		(C)	बीमारियों का इलाज नहीं कर सकती
	(D)	Only works in animals		(D)	केवल जानवरों में काम करती है
93.	A patie	nt with ADA-SCID can be treated	93.	ADA-S	CID वाले रोगी का इलाज कैसे किया जा
	by:			सकता	है?
	(A)	Somatic gene therapy		(A)	सोमैटिक जीन थेरेपी
	(B)	Germline gene therapy		(B)	जर्मलाइन जीन थेरेपी
	(C)	Dietary supplements		(C)	आहार अनुपूरक
	(D)	Surgery		(D)	शल्य चिकित्सा
94.	CRISP	R-Cas9 is preferred over ZFNs	94.	CRISP	R-Cas9 ZFNs की तुलना में क्यों पसंद
	becaus	e :		किया ज	नाता है?
	(A)	Less precise		(A)	कम सटीक
	(B)	Easier to design and highly		(B)	डिज़ाइन करने में आसान और
	(5)	specific specific			उच्च-सटीक
	(0)	·		(C)	मानव कोशिकाओं को संपादित नहीं
	(C)	Cannot edit human cells			कर सकता
	(D)	Expensive and rare		(D)	महंगा और दुर्लभ
95.	Ex vi	vo therapy is advantageous	95.	एक्स वि	वेवो थेरेपी का लाभ क्या है?
	becaus	e :		(A)	कोशिकाएँ शरीर के बाहर संशोधित
	(A)	Cells are modified outside the body			की जाती हैं जिससे इम्यून प्रतिक्रिया
		reducing immune response			कम होती है
	(B)	Works only in embryos		(B)	केवल भ्रूण में काम करता है
	(C)	No ethical concerns		(C)	कोई नैतिक चिंता नहीं
	(D)	Immediate gene delivery in vivo		(D)	शरीर में तुरंत जीन डिलीवरी
96.	Lentivin	al vectors are chosen for :	96.	लेन्टिवा	यरल वेक्टर क्यों चुना जाता है?
	(A)	Transient expression		(A)	अस्थायी अभिव्यक्ति
	(B)	Stable gene integration		(B)	स्थिर जीन एकीकरण
	(C)	Only plant cells		(C)	केवल पौधों की कोशिकाएँ
	(D)	Only bacterial cells		(D)	केवल बैक्टीरिया कोशिकाएँ
Z0101	08T-A/3	36 (2	1)		[P.T.O.]

97.	Ethica therap	al concern unique to germline y:	97.	जर्मलाइ चिंता व	न थेरेपी से संबंधित विशिष्ट नैतिक म्या है?
	(A)	Cost		(A)	लागत
	(B)	Heritable changes affecting future generations		(B)	वंशानुगत परिवर्तन जो भविष्य की पीढ़ियों को प्रभावित करते है
	(C)	Immune response		(C)	इम्यून प्रतिक्रिया
	(D)	Lab contamination		(D)	लैब संदूषण
98.	CAR-T	cell therapy is an example of :	98.	CAR-T	कोशिका थेरेपी का उदाहरण क्या है?
	(A)	Somatic gene therapy in cancer		(A)	कैंसर में सोमैटिक जीन थेरेपी
	(B)	Germline gene therapy		(B)	जर्मलाइन जीन थेरेपी
	(C)	Traditional chemotherapy		(C)	पारंपरिक कीमोथेरेपी
	(D)	Vaccination		(D)	टीकाकरण
99.	Which immur	ŭ	99.		रेपी में इम्यून प्रतिक्रिया जोखिम को कम के लिए कौन सा तरीका है?
	therap	y? Using ex vivo modified cells		(A)	एक्स विवो संशोधित कोशिकाओं का उपयोग
	(B)	Using viral vectors in vivo		(B)	शरीर में वाययरल वेक्टर का उपयोग
	(C)	Increasing dosage		(C)	खुराक बढ़ाना
	(D)	Random integration		(D)	यादृच्छिक एकीकरण
100.	A majo	or technical challenge in gene therapy	100.	जीन थें है?	रेपी में एक प्रमुख तकनीकी चुनौती क्या
	(A)	Targeted delivery and stable expression of genes		(A)	लक्षित डिलिवरी और जीन की स्थिर० अभिव्यक्ति
	(B)	Availability of doctors		(B)	डॉक्टरों की उपलब्धता
	(C)	Cost of surgery		(C)	शल्य चिकित्सा की लागत
	(D)	Patient compliance		(D)	रोगी की अनुपालन
Z0101	108T-A/	(22)		

Rough Work / रफ कार्य

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।