Roll. No								Question Booklet Number	
O.M.R. Serial No.									

B.Sc. (SEM.-V) (NEP) (SUPPLE.) EXAMINATION, 2024-25 BIOTECHNOLOGY

(Molecular Biology)

(BBT-5001)

	Paper Code							
Z	0	1	0	1	0	6	T	

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee:

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है :

(शेष निर्देश अन्तिम पृष्ठ पर)

1.		as ilist identilled as genetic material		(C)	Chloropiast DNA
	by:			(D)	Eukaryotic chromosomes
	(A)	Watson	6.	The dire	ection of new DNA strand synthesis
	(B)	Miescher		is:	
	(C)	Mendel		(A)	3' to 5'
	(D)	Griffith		(B)	5' to 3'
2.	The do	ouble helix model for DNA was ed by:		(C)	Random
	(A)	Meselson and Stahl		(D)	N/A
	(B)	Avery et al.	7.	Which replicat	protein unwinds DNA during ion?
	(C)	Hershey and Chase		(A)	Topoisomerase
	(D)	Watson and Crick		(B)	Ligase
3.	In proka	aryotes, DNA replication starts at:			•
	(A)	Many origins		(C)	Polymerase
	(B)	One single origin		(D)	Helicase
	(C)	Telomeres	8.	Okazak	i fragments are found during:
	(D)	Nucleolus		(A)	Leading strand synthesis
4.	The ma	ain enzyme that adds nucleotides		(B)	Lagging strand synthesis
	during l	DNA replication is:		(C)	DNA repair
	(A)	RNA polymerase		(D)	RNA processing
	(B)	Ligase	9.	The enz	zyme responsible for joining Okazaki
	(C)	DNA polymerase		fragme	nts is:
	(D)	Helicase		(A)	DNA ligase
5.	Rolling	circle replication occurs in:		(B)	DNA polymerase I
	(A)	Plasmids and phage DNA		(C)	Helicase
	(B)	Mitochondrial DNA		(D)	Primase

10.	Semico	nservative nature of DNA replication		(C)	Continuously	
	was pr	oven by:		(D)	Randomly	
	(A)	Avery-Macleod-McCarty	15.	Pre-priming proteins are essential for:		
	(B)	Hershey and Chase		(A)	RNA synthesis	
	(C)	Meselson and Stahl		(B)	Glycolysis	
	(D)	Watson and Crick		(C)	Mitosis	
11.	DNA p	rimase synthesizes:			DNA unwinding before replication	
	(A)	DNA primers		(D)		
	(B)	RNA polymerase	16.	Bidirect	tional replication means:	
	(C)	DNA ligase		(A)	DNA is replicated in one direction	
	(D)	RNA primers		(B)	DNA is replicated at both fork ends	
12.	The fid	elity of DNA replication is enhanced		(C)	Only in eukaryotes	
	by:			(D)	Only in prokaryotes	
	(A)	Polymerase proofreading	17.	The rep	plication fork is:	
	(B)	Exonuclease activity		(A)	Where DNA is translated	
	(C)	Both (A) and (B)		(B)	Where proteins are degraded	
	(D)	Ribosomes		(C)	Where DNA is being unwound and	
13.	DNA po	olymerase III is mainly found in:			replicated	
	(A)	Eukaryotes		(D)	None of these	
	(B)	Viruses	18.	DNA p	olymerases require a template and	
	(C)	Prokaryotes		a:		
	(D)	Plants		(A)	Free 5' end	
14.	The lea	ading strand is synthesized:		(B)	Free 3' end	
	(A)	Discontinuously		(C)	Promoter	
	(B)	In fragments		(D)	Stop codon	

(4)

19.	Eukar	yotic chromosomes have:	24.	High	fidelity replication is important for:
	(A)	Single origin of replication		(A)	Genetic stability
	(B)	Multiple origins of replication		(B)	Protein synthesis
	(C)	No origins of replication		(C)	Membrane integrity
	(D)	Rolling circle		(D)	None of these
20.	Uniqu	e aspect of eukaryotic replication:	25.	Semi	conservative replication produces:
	(A)	Multiple origins		(A)	One old and one new strand per
	(B)	Primosome involvement			duplex
	(C)	Both (A) and (B)		(B)	Two old strands
	(D)	None of these		(C)	Two new strands
21.	` '		(D)	Random strands	
		26.	DNA	damage by UV light causes:	
	(B)	Transcription		(A)	Double-strand breaks
	(C)	Translation		(B)	Ribose breaks
	. ,			(C)	Thymine dimers
	(D)	Protein folding		(D)	Guanine cross-links
22.		polymerase in bacteria responsible for elongation:	27.	Remo	oval of abnormal bases like uracil from
	•	•		DNA	is done by:
	(A)	DNA polymerase I		(A)	Base excision repair
	(B)	DNA polymerase III		(B)	Photoreactivation
	(C)	DNA polymerase II		(C)	Mismatch repair
	(D)	RNA polymerase		(D)	Nucleotide excision repair
23.	Which	protein relieves supercoiling?	28.	Nucle	otide excision repair typically corrects:
	(A)	Helicase		(A)	Thymine dimers
	(B)	Primase		(B)	Mismatched bases
	(C)	Ligase		(C)	Alkylated guanine
	(D)	Topoisomerase		(D)	Both (A) and (C)
Z010	106T-A	/60 (5	5)		[P.T.O.]

29.	Mismat	ch repair is mainly for:		(C)	ATP	
	(A)	Removing thymine dimers		(D)	DNA polymerase	
	(B)	Correcting replication errors	34.	Homolo	ogous recombination maintains:	
	(C)	Repairing double-strand breaks		(A)	Cell wall structure	
	(D)	Deamination damage		(B)	RNA splicing	
30.		eactivation repairs damage caused		(C)	Protein folding	
	by:			(D)	Genome integrity	
	(A)	X-rays		(D)		
	(B) Chemical mutagens		35.	During mismatch repair, which strand is		
	(C)	UV light		preferentially repaired?		
	(D)	lonizing radiation		(A)	Methylated strand	
31.	DNA gl	ycosylase is associated with:		(B)	Non-methylated strand	
	(A)	Nucleotide excision		(C)	Leading strand	
	(B)	Base excision repair		(D)	Lagging strand	
	(C)	Mismatch repair	36.	Recom	binational repair needs:	
	(D)	Homologous recombination		(A)	Homologous sequences	
32.		nologous end joining is a mechanism		(B)	Ligases only	
	for repa	airing:		(C)	Topoisomerase	
	(A)	Single-strand breaks			Nuclease only	
	(B)	Base mismatches		(D)	•	
	(C)	Double-strand breaks	37.	The ma	ain enzyme for nucleotide excision	
	(D)	Alkylation		·		
33.	The en	zyme photolyase requires what for		(A)	DNA glycosylase	
	activity	?		(B)	DNA ligase	
	(A)	Visible light		(C)	UvrABC endonuclease	
	(B)	Darkness		(D)	Telomerase	

(6)

38.	In E.	coli, MutS recognizes:	42.		igase in repair processes is important
	(A)	Thymine dimers		for:	
	(B)	Double-stranded breaks		(A)	Adding nucleotides
	(C)	Holliday junction		(B)	Removing primers
	(D)	Mismatched base pairs		(C)	Sealing breaks
39.	Homo	logous recombination is important		(D)	Proofreading
	during	r.	43.	ATM a	and ATR are proteins involved in:
	(A)	Replication		(A)	DNA repair signaling
	(B)	Transcription		(B)	Transcription
	(C)	Meiosis		(C)	Protein synthesis
	(D)	Translation		(D)	Golgi function
40.		classic model for homologous bination is:	44.	Nonho	omologous end joining is often:
	(A)	Meselson-Stahl		(A)	Error-free
	(B)	Holliday model		(B)	Error-prone
	(C)	Watson-Crick		(C)	Highly accurate
	(D)	Avery model		(D)	Not used in eukaryotes
41.		purinic/apyrimidinic) sites result from:	45.	Trans	lesion synthesis allows:
	(A)	Deamination		(A)	Repair in the dark
	(B)	Photoreactivation		(B)	No role in DNA repair
	(C)	Recombination		(C)	Only in prokaryotes
	(D)	Depurination		(D)	Replication across DNA lesions
	(5)	Бориннация			

(7)

[P.T.O.]

46.	Homolo	gous recombination requires:	50.	DNA re	pair protects cells from:	
	(A)	RecA protein (in bacteria)		(A)	Mutations	
	(D)	Photolyaca		(B)	Protein folding errors	
	(B)	Photolyase		(C)	Membrane rupture	
	(C)	Primase		(D)	None of these	
	(D)	Ligase only	51.	The en	zyme responsible for transcription is:	
47.	In reco	mbinational repair, DNA sequence		(A)	DNA polymerase	
	is required.			(B)	RNA polymerase	
	(A)	difference		(C)	DNA ligase	
	(^)	dilicience		(D)	Primase	
	(B)	methylation	52.	Sigma	factor is needed for:	
	(C)	phosphorylation		(A)	Replication	
	(D)	similarity		(B)	Splicing	
40				(C)	Translation	
48.	імитн р	rotein acts as:		(D)	Initiation of transcription in	
	(A)	DNA ligase			prokaryotes	
	(B)	Endonuclease in mismatch repair	53.	Promoters are located:		
	(C)	DNA helicase		(A)	At the start of genes	
				(B)	At the end of genes	
	(D)	RNA polymerase		(C)	In exons	
49.	Nucleof	tide excision repair removes:		(D)	In introns	
	(A)	Only a single base	54.		NA synthesized during transcription	
				·	plementary to:	
	(B)	Only mismatches		(A)	Coding strand	
	(C)	Oligonucleotide segment (several		(B)	Template strand	
		bases)		(C)	Both	
	(D)	RNA		(D)	None of these	

55.			pre- 59.	Polya	denylation adds:
	mRN/	A is:		(A)	A G-cap at the 5' end
	(A)	Splicing		(B)	A string of G
	(B)	Polyadenylation		(C)	A string of A at the 3' end
	(C)	Capping		(D)	Methylations
	(D)	Translation	60.	The o	core promoter element in eukaryotes
56.	RNA	polymerase II transcribes:		is:	
	(A)	tRNA		(A)	Pribnow box
	(B)	rRNA		(B)	TATA box
	(C)	snRNA		(C)	GC box
	(D)	mRNA		(D)	CAAT box
57.	Which	RNA is most abundant in cells?	61.	Enhai	ncers are:
	(A)	mRNA		(A)	Introns
	(B)	tRNA		(B)	Part of exons
	(C)	rRNA		(C)	RNA molecules
	(D)	snRNA		(D)	Distant regulatory DNA elements
58.	What	is the role of the 5' cap?	62.	Termi	nation of transcription in prokaryotes
	(A)	Stabilizes mRNA		can b	e:
	(B)	Marks mRNA for degradation		(A)	Rho-dependent or rho-independent
	(C)	Assists splicing only		(B)	Only rho-dependent
	(D)	Exports DNA		(C)	Only rho-independent
				(D)	Random
Z010	106T-A	/60	(9)		[P.T.O.]

63.	In prok	aryotes, the sigma factor falls off after:	67.	Alterna	ative splicing produces:
	(A)	Initiation stage		(A)	Same mRNAs always
	(B)	Elongation begins		(B)	Only tRNAs
	(C)	At the end of mRNA synthesis		(C)	Only rRNAs
	(D)	Capping		(D)	Different mRNAs from the same gene
64.	Transc	ription factors assist:	68.	What is	s required for transcription elongation?
	(A)	DNA replication		(A)	Rho protein
	(B)	Translation		(B)	Template DNA and RNA
	(C)	Splicing			polymerase
	(D)	Initiation and regulation of		(C)	Ligase
	(-)	transcription		(D)	Helicase
65.	rRNA 1	ranscripts are processed in the:	69.	Which eukary	RNA polymerase makes tRNA in rotes?
	(A)	Cytoplasm		(A)	RNA pol I
	(B)	Golgi		(B)	RNA pol II
	(C)	Nucleolus		(C)	RNA pol III
	(D)	Mitochondria		(D)	RNA pol IV
66.	Which	is not a step in mRNA maturation?	70.	Promo	ter clearance is associated with:
	(A)	5' capping		(A)	Transition from initiation to elongation in transcription
	(B)	Polyadenylation		(B)	Translation
	(C)	Peptide bond formation		(C)	DNA repair
	(D)	Splicing		(D)	Protein folding

(10)

71.	Spliceosome is composed of:			75.	The process of gene expression regulation		
	(A)	DNA and protein			occurs at:		
	(B)	Lipids and carbohydrate			(A)	Transcriptional level	
	(C)	snRNPs and protein			(B)	Post-transcriptional level	
	(D)	rRNA only			(C)	Translational level	
72.	Prokary	votic mRNA is usually:			(D)	All of the above	
	(A)	Monocistronic	76.	76.	The operon concept was proposed by:		
	(B)	Polycistronic			(A)	Watson and Crick	
	(C)	Non-coding			(B)	Hershey and Chase	
	(D)	Always spliced			(C)	Jacob and Monod	
73.	Which I	RNA is involved in translation?			(D)	Avery et al.	
	(A)	tRNA		77.	The lac	c operon is an example of:	
	(B)	mRNA			(A)	Inducible operon	
	(C)	rRNA			(B)	Repressible operon	
	(D)	All of the above			(C)	Constitutive operon	
74.	The pr	imary transcript in eukaryotes	is		(D)	None of these	
	called:	• • •		78.	Tryptop	ohan (trp) operon is:	
	(A)	Pre-mRNA			(A)	Inducible	
	(B)	mRNA			(B)	Repressible	
	(C)	snRNA			(C)	Both	
	(D)	rRNA			(D)	Neither	
Z0101	06T-A/0	50	(11)		[P.T.O.]	

[P.T.O.]

79. Ribos		ome is composed of: 83.		The start codon for translation is:		
	(A)	Only RNA		(A)	UAA	
80.	(B)	Only proteins		(B)	UAG	
	(C)	Both RNA and proteins		(C)	AUG	
	(D)	Only DNA		(D)	UGA	
	Shine-Dalgarno sequence is present in:		84.	Wobble	e hypothesis explains:	
	(A)	Prokaryotic mRNA		(A)	DNA damage	
	(B)	Eukaryotic mRNA		(B)	RNA splicing	
	(C)	rRNA		(C)	Transposons	
	(D)	tRNA		(D)	Base pairing flexibility at the third codon position	
		nall ribosomal subunit in prokaryotes	85.	Polyribosome (polysome) is:		
	is:			(A)	Single ribosome on mRNA	
	(A) (B)	30S 40S		(B)	Several ribosomes translating one mRNA	
	(C)	60S		(C)	Only in mitochondria	
	(D)	70S		(D)	Only in prokaryotes	
82.	tRNA functions to:		86.	In euka	ryotes, translation occurs in:	
	(A)	Carry mRNA		(A)	Nucleus	
	(B)	Act as enzyme		(B)	Mitochondria only	
	(C)	Carry DNA		(C)	Cytoplasm	
	(D)	Carry amino acids		(D)	Golgi	

87.	The A site in ribosome is for:			91.	The process where single mRNA is		
	(A)	Growing peptide exit			translated by several ribosomes is called:		
	(B)	Peptide bond formation		(A)	Polysome formation		
	(C)	mRNA attachment		(B)	Splicing		
	(D)	Aminoacyl-tRNA entry		(C)	Transcription		
88.		e factors are required for:			(D)	DNA replication	
00.		·		92.	The repressor in lac operon binds to:		
	(A)	Initiation of transcription			(A)	Promoter	
	(B)	Peptide bond formation			(B)	Operator	
	(C)	Termination of translation			(C)	Regulator gene	
	(D)	DNA repair			(D)	Coding gene	
89.	Posttra	nslational modification includes:		00			
	(A)	Phosphorylation	93.	93.	Leader	sequence is present in:	
	(B)	Methylation			(A)	tRNA	
	(C)	Glycosylation			(B)	Protein	
	(D)	All of the above		(C)	DNA		
90.		tic chloramphenicol inhibits:			(D)	mRNA	
	(A) DNA replication		94.	94.	Prokaryotic translation and transcription:		
			in		(A)	Can occur simultaneously	
	(B)	RNA capping			(B)	Are separated in space	
	(C)	Peptide bond formation prokaryotes			(C)	Only in the nucleus	
	(D)	mRNA degradation			(D)	Not related	
	(D)	mixiva degradation			(5)	TOUR FORMATION	
Z010106T-A/60			(13)		[P.T.O.]	

95.	Eukar	yotic ribosome is:	98.	Initiato	or tRNA in prokaryotes carries:
	(A)	70S		(A)	Methionine
	(B)	80S		(B)	Formylmethionine
	(C)	60S		(C)	Tryptophan
	(D)	30S		(D)	Lysine
96.		Which is a mechanism of gene regulation in eukaryotes?		Mutati cause	on in operator region of operon may
	(A)	DNA methylation		(A)	Loss of regulation
	(B)	Enhancer elements		(B)	More protein production
	(C)	RNA interference		(C)	Repressed transcription
	(D)	All of the above		(D)	Any of the above
97.	Amino	Aminoacyl-tRNA synthetase:		Inhibit	ors of translation can be used as:
	(A)	Attaches amino acid to tRNA		(A)	Antibiotics
	(B)	Synthesizes rRNA		(B)	Sugars
	(C)	Splices introns		(C)	Polysaccharides
	(D)	Degrades proteins		(D)	None of these

Rough Work / रफ कार्य

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।