Roll. No	••••••	•••			Question Booklet Number
O.M.R. Serial No.					

M.Sc. (SEM.-IV) (NEP) (SUPPLE.) EXAMINATION, 2024-25 MICROBIOLOGY

(Industrial Microbiology)

	F	Pap	er	C	od	e	
L	0	4	1	0	0	1	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- 4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

1.	me	The main material used for constructing			without ballies, the liquid inside a stiffed		
	large-	-scale fermentors is :		tank fermentor tends to move in a :			
	(A)	Copper		(A)	Axial flow		
	(B)	Stainless steel		(B)	Circular motion with vortex formation		
	(C)	Plastic		(C)	Radial turbulent flow		
	(D)	Aluminum		(D)	Upward flow only		
2.	Air-lif	t fermentors belong to which type of	7.	Carbo	on source in fermentation media is		
	syste	m?		comn	commonly provided by :		
	(A)	Stirred tank		(A)	Peptone		
	(B)	Photobioreactor		(B)	Glucose		
	(C)	Packed bed		(C)	Ammonium sulfate		
	(D)	Pneumatic fermentor		(D)	Yeast extract		
3.	In pa	cked bed fermentors, microorganisms	8.	The r	nitrogen source in media can be :		
	are g	enerally:		(A)	Sodium chloride		
	(A)	Suspended		(B)	Glycerol		
	(B)	Free floating		(C)	Agar		
	(C)	Immobilized on support material		(D)	Ammonium salts		
	(D)	Washed away	9.	Comp	olex media are different from defined		
4.	In a s	tirred tank fermentor, baffles are usually		media	a because they :		
	fixed	to the :		(A)	Contain natural ingredients of		
	(A)	Impeller			unknown composition		
	(B)	Shaft		(B)	Contain chemically defined		
	(C)	Fermentor wall			compounds only		
	(D)	Sparger		(C)	Contain only inorganic salts		
5.	Whic	h of the following best describes the		(D)	Lack carbon source		
	functi	on of impellers in a baffled stirred tank	10.	The	most common method for sterilizing		
	ferme	entor?		ferme	entation media is :		
	(A)	Supply sterile air		(A)	UV radiation		
	(B)	Support baffles		(B)	Autoclaving		
	(C)	Maintain sterility		(C)	Filtration		
	(D)	Provide agitation and mixing		(D)	Dry heat		

11.	Heat-	sensitive vitamins in the medium are	16.	Sparg	gers in fermentors are used for ;		
	sterili	zed by :		(A)	Heating		
	(A)	Radiation		(B)	Sterilization		
	(B)	Autoclaving		(C)	Introduction of sterile air		
	(C)	Dry heat		(D)	Agitation		
	(D)	Filtration	17.	Incre	asing agitation speed in fermentors		
12.		nain purpose of inoculum preparation		gener	,		
	is :			(A)	Kills microbes directly		
	(A)	Reduce contamination		(B)	Reduces oxygen transfer		
	(B)	Replace sterilization		(C)	Has no effect		
	(C)	Ensure sufficient biomass		(D)	Increases oxygen transfer		
	(D)	Increase temperature	18.		most commonly used foam control		
13.	For fungal fermentations, inoculum is often prepared in the form of :				agent is:		
	(A)	Spores		(A)	Silicones		
	(B)	Single cells		(B)	Glucose		
	(C)	Biofilms		(C)	Ammonium sulfate		
	(D)	None of these		(D)	All of the above		
14.	Immo	bilized cells are used mainly because:	19.	Exces	ssive foam formation can lead to:		
	(A)	They are easy to sterilize		(A)	Increased oxygen transfer		
	(B)	They need no nutrients		(B)	Loss of culture		
	(C)	They grow faster than free cells		(C)	Increased biomass only		
	(D)	They can be reused and stabilized		(D)	No effect on fermentation		
15.	Oxyg	en transfer rate in fermentors depends	20.	Cell	lisruption methods are classified as :		
	on:			(A)	Mechanical and non-mechanical		
	(A)	Agitation speed		(B)	Batch and continuous		
	(B)	Aeration rate		. ,			
	(C)	Solubility of oxygen		(C)	Open and closed		
	(D)	All of the above		(D)	Reversible and irreversible		

(4)

L041001T-A/36

21.	Precipitation of proteins is commonly done 25. using:		25.	Which of the following items is not suitable for autoclave sterilization?			
	(A)	Ammonium sulfate		(A)	Culture media		
	(B)	Sodium chloride		(B)	Glassware		
	(C)	Glucose		(C)	Heat-sensitive plastic materials		
	(D)	Silica		(D)	Surgical dressings		
22.	The last step in downstream processing of biologicals is usually:				Primary screening of microorganisms is done to :		
	(A)	Crystallization		(A)	Detect industrially important traits in mixed cultures		
	(B)	Drying and formulation		(B)	Compare yields of improved strains		
	(C)	Extraction		(C)	Maintain strain stability		
	(D)	Sterilization		(D)	Scale-up process		
23.	The pri	inciple behind an autoclave is :	27.		ain purpose of secondary screening		
	(A)	Dry heat sterilization		is :			
	(B)	Ultraviolet radiation		(A)	To isolate pure cultures		
	(C)	Moist heat under pressure		(B)	To prepare starter cultures		
	(D)	Filtration		(C)	To measure cell morphology		
24.	Standa	ard operating conditions of an		(D)	To identify high-yielding strains with industrial potential		
		ve for sterilization are :	28.	Which of the following is not a method			
	(A)	100 °C, 15 minutes, normal			improvement?		
		pressure		(A)	Mutagenesis		
	(B)	121 °C, 15 psi, 15–20 minutes		(B)	Genetic recombination		
	(C)	160 °C, 2 hours, dry heat		(C)	Protoplast fusion		
	(D)	37 °C, 24 hours, incubation		(D)	Filtration		
L0410	01T-A/	36 (5)		[P.T.O.]		

29.		ain improvement?	33.	scale	n of the following is the correct order in -up?	
	(A)	Recombinant DNA technology		(A)	Production \rightarrow Pilot plant \rightarrow Shake	
	(B)	Adaptive evolution			flask $ ightarrow$ Lab fermenter	
	(C)	CRISPR-Cas9		(B)	Shake flask \rightarrow Lab fermenter \rightarrow	
					Pilot plant → Production fermenter	
	(D)	Genetic engineering		(C)	Lab fermenter \rightarrow Shake flask \rightarrow	
30.	• •	reservation maintains microorganisms			Pilot plant → Production	
	at :			(D)	Shake flask → Pilot plant → Lab	
	(A)	−20 °C			fermenter→ Production	
	(B)	−80 °C	34.	Scale-down studies are important for :		
	(C)	–196 °C		(A)	Understanding metabolic regulation	
	(D)	4 °C			under stress	
24				(B)	Reducing production cost	
31.		degeneration refers to :		(C)	Simulating large-scale conditions in	
	(A)	Loss of production ability with			lab	
		repeated culturing		(D)	Both (A) and (C)	
	(B)	Increase in product yield	35.	The m	nost common shake flask volume used	
	(C)	Growth of contaminant		for in	oculum development is :	
		microorganisms		(A)	50 mL	
	(D)	Overproduction of secondary		(B)	100–250 mL	
		metabolites		(C)	1–2 L	
32.	Scale	-up in fermentation means :		(D)	10 L	
	(A)	Increasing product purity	36.	Which	n factor is most critical when scaling	
				up ae	erobic fermentations?	
	(B)	Reducing production costs		(A)	Temperature	
	(C)	Transferring process from small		(B)	pH electrodes	
		scale to larger scale		(C)	Media color	

(D)

(D)

Aeration and agitation

Maintaining cultures on agar slants

37. Which parameter is often used as a criterion 41. Heat removal becomes a critical issue in : for scale-up of aerobic fermentations? Shake flask culture (A) (A) Mixing time (B) Large-scale production fermenters (B) Power input per volume (P/V) (C) Lab-scale stirred tanks (C) Volumetric oxygen transfer (D) Agar slant cultures coefficient (kLa) 42. The main advantage of pilot plant studies (D) All of the above is: 38. Inoculum size is generally: (A) Reduced contamination chances 1-5% of fermenter volume (A) (B) Cost minimization 10-50% of fermenter volume (B) (C) Predicting performance at industrial scale 0.01-0.1% of fermenter volume (C) (D) Faster product formation (D) Equal to fermenter volume 43. In media optimization during scale-up, which 39. Foam formation in large fermenters is component is most critical for cost controlled by: reduction? (A) Agitation speed (A) Carbon source (B) Antifoam agents Vitamins (B) (C) Decreasing aeration Trace elements (C) (D) Reducing inoculum (D) **Buffers** 40. A challenge during scale-up of fermentation 44. The key factor for industrial strain is: maintenance programs is: (A) Maintaining uniform oxygen transfer (A) Maintaining product yield and and mixing genetic stability Avoiding contamination (B) Easy nutrient availability (B) (C) Sterilizing large volumes of media Rapid cell growth (C)

(D)

Continuous culture only

(D)

All of the above

45.		ne main microorganism used in beer oduction is:		The aging of wine in wooden barrels mainly affects its:		
	(A)	Aspergillus niger		(A)	Alcohol content	
	(B)	Lactobacillus bulgaricus		(B)	Flavor and aroma	
	(C)	Saccharomyces cerevisiae		(C)	Yeast growth	
	(D)	None of the above		(D)	Sugar content	
46.	In wine	production, the substrate used is :	50.	Proteas	e enzymes are industrially used in :	
	(A)	Malted barley		(A)	Baking industry	
	(B)	Rice		(B)	Brewing industry	
	(C)	Grapes		(C)	Leather tanning	
	(D)	Corn mash		(D)	None of the above	
47.		aerobic conversion of sugars into and CO, by yeast is called:	51.		microorganism is commonly used for rcial amylase production?	
	(A)	Respiration		(A)	Bacillus subtilis	
	(B)	Fermentation		(B)	Streptococcus thermophilus	
	(C)	Distillation		(C)	Pseudomonas aeruginosa	
	(D)	Hydrolysi		(D)	Escherichia coli	
48.		zyme complex responsible for starch own during beer brewing is:	52.		fungal species is known for acid- amylase production?	
	(A)	Protease		(A)	Aspergillus oryzae	
	(B)	Zymase		(B)	Rhizopus stolonifer	
	(C)	Amylase		(C)	Penicillium chrysogenum	
	(D)	Cellulase		(D)	Candida albicans	

(8)

L041001T-A/36

53.	Citric a	icid is produced industrially by :	57	-	oduction of amino acids in microbes
	(A)	Saccharomyces cerevisiae		is ofter	achieved by :
	(B)	Aspergillus niger		(A)	Mutagenesis and selection
	(C)	Acetobacter aceti		(B)	Use of antibiotics
				(C)	Heat shock
	(D)	Bacillus subtilis		(D)	Plasmid curing
54.	Which	pathway is primarily involved in ci			•
	acid pr	oduction?	58	Which feed?	amino acid is widely added to animal
	(A)	Glycolysis		(A)	Glycine
	(B)	TCA cycle		(A)	Glydile
	(0)	Destar should be sally a		(B)	Histidine
	(C)	Pentose phosphate pathway		(C)	Lysine
	(D)	Entner-Doudoroff pathway		(D)	Alanine
55.	Citric a	cid is widely used in industry as			
	(A)	A matibalish	59	Vitamir	n B2 is also known as :
	(A)	Antibiotic		(A)	Thiamine
	(B)	Plasticizer		(B)	Riboflavin
	(C)	Flavoring agent		(C)	Niacin
	(D)	Sweetener		(0)	Hudon
	(-)			(D)	Cobalamin
56.	Glutam	ic acid is mainly produced by :	60	Vitamir	B12 is also called :
	(A)	Corynebacterium glutamicum		(A)	Riboflavin
	(B)	Bacillus subtilis		(B)	Cobalamin
	(C)	Pseudomonas fluorescens		(C)	Folic acid
	(D)	Lactobacillus casei		(0)	
	(D)	Lacionacilius casti		(D)	Nicotinamide
L0410	01T-A/	36	(9)		[P.T.O.]

61.	Indust involve	rial production of vitamin B2 es :	65.		ndustrial production of penicillin is d out by :	
	(A)	Ashbya gossypii		(A)	Penicillium roquefortii	
	(B)	Bacillus subtilis		(B)	Penicillium chrysogenum	
	(C)	Corynebacterium glutamicum		(C)	Penicillium notatum	
	(D)	Saccharomyces cerevisiae		(D)	Aspergillus niger	
62.	Which microorganism is widely used for vitamin B12 production?		66.		Penicillin production in industry occurs mainly during :	
	(A)	Acetobacter aceti Propionibacterium freudenreichii		(A)	Lag phase	
	(B)			(B)	Log phase	
	(C)	Bacillus subtilis		(C)	Stationary phase	
	(D)	Rhizopus stolonifer		(D)	Death phase	
63.	Vitamir	n B12 contains which metallic ion at e?	67.		omycin is produced by :	
	(A)	Iron		(A)	Streptococcus lactis	
	(B)	Magnesium		(B)	Aspergillus fumigatus	
	(C)	Cobalt		(C)	Bacillus subtilis	
	(D)	Copper		(D)	Streptomyces griseus	
64.		ciency of vitamin B12 in humans ly causes :	68.	Penici	llin is classified as a	
	(A)	Night blindness		(A)	Cephalosporin	
	(B)	Scurvy		(B)	Macrolide	
	(C)	Pernicious anemia		(C)	eta -lactam antibiotic	
	(D)	Rickets		(D)	Tetracycline	
L0410	01T-A/	36	10)			

69.		rmentation method commonly used strial antibiotic production is :	73.		rimary use of interferons is in the ent of :
	(A)	Surface fermentation		(A)	Bacterial infections
	(B)	Submerged fermentation		(B)	Autoimmune diseases only
	(C)	Solid-state fermentation		(C)	Fungal infections
	(D)	Anaerobic digestion		(D)	Viral infections and cancers
70.	Which	is not an antibiotic-producing genus?	74.		first recombinant DNA-derived eutic protein produced was :
	(A)	Streptomyces		(A)	Streptokinase
	(B)	Penicillium		(B)	Human insulin
	(C)	Saccharomyces		(C)	Interferon- $lpha$
	(D)	Bacillus		(D)	Erythropoietin
71.	Interfe	rons are classified as :	75.	The a	dvantage of recombinant insulin over
	(A)	Growth factors		anima	l-derived insulin is
	(B)	Antiviral proteins		(A)	Cheaper production
	(C)	Antibiotics		(B)	Faster fermentation
	(D)	Enzymes		(C)	Reduced immune reactions
72.	The re	combinant production of interferons		(D)	Longer shelf life
	is carri	ed out in :	76.	Attenu	ated vaccines are prepared from :
	(A)	Streptomyces spp.		(A)	Killed pathogens
	(B)	E. coli or yeast		(B)	Live but weakened pathogens
	(C)	Bacillus anthracis		(C)	Only proteins
	(D)	Cyanobacteria		(D)	Toxins only
L0410	01T-A/	36 (1	1)		[P.T.O.]

77.	Which vaccine is a recombinant subunit vaccine?			The main advantage of microbial steroid transformation is:			
	(A)	BCG		(A)	Cost reduction and specificity		
	(B)	Polio (OPV)		(B)	Faster growth of microbes		
	(C)	Hepatitis B vaccine		(C)	Less need for fermentation		
	(D)	Rabies vaccine		(D)	Reduced immune response		
78.	The D	PT vaccine protects against :	82.		The industrial steroid biotransformations are		
	(A)	Diphtheria, Pertussis, Tetanus		•	y catalyzed by :		
	(B)	Dengue, Polio, Typhoid		(A)	Extracellular enzymes		
	(C)	Diphtheria, Plague, Typhoid		(B)	Intracellular enzymes like hydroxylases		
	(D)	Dysentery, Pertussis, Tetanus		(C)	Plasmids		
79.	Microorganisms are used in steroid			(D)	Toxins		
	biotran	ransformation mainly for :		Biotra	nsformation of steroids is important		
	(A)	Increasing solubility		in :			
	(B)	Adding hydroxyl groups		(A)	Enzyme engineering		
		(hydroxylation)		(B)	Food preservation		
	(C)	Increasing toxicity		(C)	Fuel production		
	(D)	Destroying activity		(D)	Hormone synthesis and		
80.	Cortis	one is produced by microbial			pharmaceuticals		
	hydrox	cylation of :	84.	Xantha	an gum is mainly produced by :		
	(A)	Cholesterol		(A)	Bacillus subtilis		
	(B)	Progesterone		(B)	Xanthomonas campestris		
	(C)	Testosterone		(C)	Lactobacillus bulgaricus		
	(D)	Prednisone		(D)	Aspergillus niger		
L0410	001T-A/	(12)	2)				

85.	The m	ain industrial application of dextrar	1	89.	PHB i as :	s accumulated in microorganisms		
	(A)	Biodegradable plastic			(A)	Enzyme		
	(B)	Food thickener			(B)	Protein granules		
	(C)	Blood plasma substitute			(C)	Intracellular carbon and energy reserve		
	(D)	Antibiotic production			(D)	Extracellular polysaccharide		
86.	Xantha	an gum is widely used as:		90.	Which	property makes PHB attractive for		
	(A) Anticoagulant				medic	medical applications?		
	(B)	Vitamin supplement			(A)	Biodegradability and biocompatibility		
	(C)	Antibiotic			(B)	Non-biodegradability		
	(D)	Emulsifier and stabilizer			(C)	Water solubility		
87.		sugar is the primary substrate fo	r		(D)	Toxicity to microbes		
	dextra	dextran production?		91.	Single	Cell Protein refers to :		
	(A)	Maltose			(A)	Protein from plant seeds		
	(B)	Sucrose			(B)	Protein extracted from microbial		
	(C)	Glucose				biomass		
	(D)	Lactose			(C)	Protein from animal tissues		
88.	''	oolyhydroxybutyrate) belongs to which of bioplastics?	า		(D)	Protein supplements from algae only		
	(A)	Polylactic acids		92.	Cyano	bacterium widely used in SCP is :		
		•			(A)	Spirulina		
	(B)	Polyurethanes			(B)	Nostoc		
	(C)	Polyhydroxyalkanoates			(C)	Anabaena		
	(D)	Polyvinyl alcohols			(D)	Chlorella		
L0410	001T-A/	36 (13)		[P.T.O.]		

93.	SCP is mainly used as :		97.	Mycorrhizal biofertilizers improve :	
	(A)	Fuel		(A)	Nitrogen fixation
94.	(B)	Food and feed supplement		(B)	Protein synthesis
	(C)	Plastic substitute		(C)	Potassium fixation
	(D)	Pesticide		(D)	Phosphorus uptake
	The most commonly cultivated edible mushroom worldwide is :		98.	Vesicular-arbuscular mycorrhiza (VAM) belongs to :	
	(A)	Agaricus bisporus		(A)	Ascomycota
	(B)	Pleurotus ostreatus		(B)	Glomeromycota
	(C)	Volvariella volvacea		(C)	Basidiomycota
	(D)	Lentinula edodes		(D)	Zygomycota
95.	Mushroom cultivation primarily uses :		99.	Cyanobacteria used as biofertilizers are primarily:	
	(A)	Soil medium		(A)	Non-photosynthetic
	(B)	Compost or lignocellulosic wastes		(B)	Antibiotic producers
	(C)	Synthetic agar medium		(C)	Fungal symbionts
	(D)	Hydroponic systems		(D)	Nitrogen-fixing
96.	Azolla-Anabaena symbiosis provides :		100.	A major advantage of algal biofertilizers in rice fields is :	
	(A)	Potassium fixation		(A)	Increase in soil salinity
	(B)	Nitrogen fixation		(B)	Addition of toxic metabolites
	(C)	Phosphate solubilization		(C)	Sustainable nitrogen input
	(D)	Zinc mobilization		(D)	Depletion of organic matter
L041001T-A/36 (14		1)			

ROUGH WORK

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।