Roll. No							Question Booklet Number
O.M.R. Serial No.							

M.Sc. (SEM.-III) (NEP) (SUPPLE.)EXAMINATION, 2024-25 MICROBIOLOGY

(Agriculture and Environmental Microbiology)

 Paper Code

 L
 0
 4
 0
 9
 0
 3
 T

(Elective)

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee:

Time: 1:30 Hours

Do not open the booklet unless you are asked to do so.

- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

- 1. Which group of microbes is primarily responsible for nitrogen fixation in soil?
 - (A) Cyanobacteria
 - (B) Actinomycetes
 - (C) Fungi
 - (D) Rhizobia
- In wastewater treatment, which microbes would be most effective at removing organic pollutants?
 - (A) Methanogens
 - (B) Algae
 - (C) Aerobic heterotrophic bacteria
 - (D) Sulfur-oxidizing bacteria
- Which of the following best describes a droplet nucleus?
 - (A) Large water droplets that settle quickly
 - (B) Residue of evaporated droplets that remain suspended in air
 - (C) Aggregates of fungal spores
 - (D) Clusters of bacterial colonies on surfaces
- 4. Why are decomposer microbes essential for ecosystems?
 - (A) They fix atmospheric nitrogen
 - (B) They recycle nutrients by breaking down organic matter
 - (C) They produce oxygen through photosynthesis
 - (D) They prevent soil erosion

- 5. What is the main principle of an impinger?
 - (A) Centrifugation of air particles
 - (B) Filtration of air through membranes
 - (C) Trapping microbes on solid agar plates
 - (D) Collection of particles in liquid medium
- 6. Which group of microbes forms the primary producers in freshwater lakes?
 - (A) Protozoa
 - (B) Cyanobacteria and algae
 - (C) Fungi
 - (D) Viruses
- 7. Which microbial group is responsible for decomposition of organic matter in rivers?
 - (A) Bacteria and fungi
 - (B) Viruses
 - (C) Cyanobacteria
 - (D) Protozoa
- 8. A river sample tested positive for high coliform counts. What does this suggest?
 - (A) Industrial pollution
 - (B) Fecal contamination
 - (C) Presence of viruses
 - (D) High oxygen content

- 9. Why do green and purple sulfur bacteria occupy the middle zones in Winogradsky column?
 - (A) They require both light and anoxic conditions
 - (B) They are strict aerobes
 - (C) They only grow in darkness
 - (D) They degrade cellulose
- 10. Dominant primary producers in deep-sea hydrothermal ecosystems are:
 - (A) Cyanobacteria
 - (B) Chemolithoautotrophic bacteria
 - (C) Green algae
 - (D) Fungi
- 11. Why are aerosols significant in microbiology?
 - (A) They increase microbial growth in soil
 - (B) They act as vectors for airborne transmission of pathogens
 - (C) They promote fermentation
 - (D) They help in nitrogen fixation
- 12. If freshwater becomes enriched with organic matter, which microbial group will proliferate first?
 - (A) Aerobic heterotrophic bacteria
 - (B) Viruses
 - (C) Fungi only
 - (D) Algae

- 13. The Andersen air sampler is based on which method?
 - (A) Filtration
 - (B) Centrifugation
 - (C) Impaction
 - (D) Impingement
- 14. The Winogradsky column is primarily used to study:
 - (A) Viral replication
 - (B) Microbial diversity and nutrient cycling
 - (C) Antibiotic resistance
 - (D) Immunology
- 15. Compare aerosols and droplet nuclei. which statement is correct?
 - (A) Aerosols are always non-infectious, while droplet nuclei are infectious
 - (B) Droplet nuclei are smaller, lighter, and remain airborne longer than aerosols
 - (C) Aerosols are formed only indoors, droplet nuclei only outdoors
 - (D) Droplet nuclei settle faster than aerosols

- 16. 'Compare microbial communities of rivers and lakes' which statement is correct?
 - (A) Rivers have more dynamic microbial shifts due to flow, while lakes show stratification related microbial layers
 - (B) Lakes have fewer microbes than rivers
 - (C) Rivers lack protozoa
 - (D) Lakes contain no viruses
- 17. Stuarine environments are characterized by:
 - (A) High oxygen and no salinity
 - (B) Constant salinity and temperature
 - (C) Fluctuating salinity and nutrient-rich waters
 - (D) No microbial life
- 18. In estuaries, heterotrophic bacteria flourish due to:
 - (A) Organic matter input from ocean
 - (B) Organic matter input from rivers
 - (C) Hydrothermal vent emissions
 - (D) Presence of methanogens
- 19. In impinger method, which liquid is commonly used to trap microbes?
 - (A) Sterile buffer/saline
 - (B) Ethanol
 - (C) Agar solution
 - (D) Acetone

- 20. Which factor distinguishes microbial communities of deep sea from estuaries?
 - (A) High pressure and low temperature in deep sea vs fluctuating salinity in estuaries
 - (B) Both are nutrient-rich zones
 - (C) Both lack microbial diversity
 - (D) Estuaries have extreme pressure like deep sea
- 21. Which factor is most responsible for high microbial diversity in estuaries?
 - (A) Constant salinity
 - (B) Mixing of marine and freshwater nutrients
 - (C) Absence of organic matter
 - (D) Low dissolved oxygen
- 22. In a stratified lake, why do anaerobic microbes dominate in deeper layers?
 - (A) Because oxygen is depleted in hypolimnion
 - (B) Because sunlight is abundant
 - (C) Because nutrients are absent in deeper water
 - (D) Because protozoa feed on them
- 23. Hydrothermal vents are mainly found:
 - (A) In freshwater lakes
 - (B) Along mid-ocean ridges
 - (C) In estuaries
 - (D) On coastal beaches

- 24. Symbiosis refers to:
 - (A) Competition between microbes
 - (B) Free-living microbial lifestyle
 - (C) Killing of one microbe by another
 - (D) Permanent or long-term association between organisms
- 25. In mutualism, both partners:
 - (A) Compete with each other
 - (B) Derive benefit from the interaction
 - (C) Remain unaffected
 - (D) Suffer harm
- 26. An example of commensalism in microbiology is:
 - (A) Staphylococcus epidermidis on human skin
 - (B) Rhizobium-legume symbiosis
 - (C) Pathogenic Salmonella in gut
 - (D) Viral infection of bacteria
- 27. In microbial competition, what is typically limited?
 - (A) Temperature
 - (B) Water only
 - (C) Sunlight
 - (D) Space, nutrients, or oxygen

- 28. In air quality assessment, what is the advantage of impaction method over impinger method?
 - (A) Allows direct microbial growth on agar plates
 - (B) Higher portability
 - (C) Better for chemical analysis of aerosols
 - (D) Faster air drying
- 29. Which nutrients are most responsible for eutrophication?
 - (A) Nitrogen and phosphorus
 - (B) Calcium and potassium
 - (C) Sodium and chloride
 - (D) Iron and zinc
- 30. If two bacterial species compete in the same nutrient medium, which outcome is likely?
 - (A) Both species grow without limitation
 - (B) Mutualism develops automatically
 - (C) Competitive exclusion of the weaker species
 - (D) One species transforms into a fungus
- 31. Lichens represent a mutualistic association between:
 - (A) Algae and fungi
 - (B) Bacteria and virus
 - (C) Protozoa and fungi
 - (D) Archaea and cyanobacteria

32. Tube worms (Riftia pachyptila) (C) They thrive under high hydrostatic pressure (A) Gills (D) They degrade hydrocarbons (B) Mouth and digestive system 37. Competitive exclusion principle states that: (C) Trophosome (A) Two species sharing the same niche (D) Symbiotic bacteria cannot coexist indefinitely 33. Amensalism is an interaction where: (B) All microbes benefit from each other (A) Both organisms benefit (C) One species always becomes a (B) Both organisms are harmed parasite (C) One organism is harmed while the (D) Microbes never compete other is unaffected 38. Which visible sign indicates eutrophication (D) Both organisms are unaffected in lakes? Cultural eutrophication is mainly caused by: 34. (A) Crystal clear water (A) Volcanic eruptions (B) Algal blooms (B) Human activities such as agriculture Increased fish diversity (C) and sewage discharge (D) High water transparency (C) Earthquakes 39. An example of microbial synergism is: (D) Tectonic uplift (A) Mixed culture fermentation of yogurt 35. In a pharmaceutical cleanroom, which air (B) Antibiotic production by fungi monitoring method will directly show colonyforming units per cubic meter (CFU/m³)? (C) Bacteriophage infection of bacteria (A) Impinger with liquid media (D) Salmonella infection Impactor with agar plates 40. (B) Penicillin inhibiting Staphylococcus aureus without affecting Penicillium is an example (C) **HEPA filtration** of: (D) Gas chromatography (A) Synergism 36. Why are piezophiles abundant in the deep Amensalism (B) sea? (C) Mutualism (A) They resist desiccation (D) Commensalism

They photosynthesize efficiently

(B)

41. An example of predation in microbial 45. Root exudates are mainly produced by: ecology is: (A) Stems (A) Bdellovibrio preying on E. coli Dead root cells only (B) (B) E. coli in human gut (C) Leaves (C) Cyanobacteria in lichens (D) Active root cells (D) Mycorrhiza with plant roots 46. Which microbial group is attracted to 42. Which energy source drives microbial flavonoids in legume root exudates? primary production in hydrothermal vents? (A) Phytophthora (A) Sunlight E. coli (B) (B) Oxidation of reduced inorganic (C) Bacillus anthracis compounds (e.g., H₂S) Rhizobium (D) (C) Organic matter from rivers 47. Compare mutualism and commensalism. (D) Fermentation which statement is correct? 43. In a microbial predator-prey system, if (A) In both, one benefits and the other predator numbers increase, what is the is unaffected expected immediate effect on prey? (B) In mutualism, both benefit; in (A) Prey population decreases commensalism, one benefits without harming the other (B) Prey population increases Prey population remains constant (C) Both involve harm to one partner (C) (D) Prey becomes predator (D) Both reduce ecosystem stability 44. 48. The term "rhizosphere effect" refers to: Amino acids in root exudates primarily: (A) (A) Support microbial growth and Increased microbial activity near

(B)

(C)

(D)

roots

Soil erosion

Decrease in root growth

Photosynthesis in leaves

biofilm formation

Reduce photosynthesis

Produce toxins in soil

Harden roots

(B)

(C)

(D)

49.	Why is microbial activity higher in the rhizosphere than in bulk soil?			The optimum C:N ratio for efficient composting is:		
	(A)	Due to root exudates providing		(A)	10:1	
		nutrients		(B)	20:1	
	(B)	Lack of water		(C)	25–30:1	
	(C)	Absence of sunlight		(D)	50:1	
	(D)	Extreme temperature	54.	Why is lignin more difficult to degrade		
50.	The Lotka-Volterra model describes:			compared to cellulose?		
	(A)	Population dynamics of predator- prey interactions		(A)	Because lignin is a complex, irregular aromatic polymer	
	(B)	Mutualistic interactions		(B)	Because lignin is crystalline	
	(C)	Microbial synergism		(C)	Because lignin is soluble in water	
	(D)	Commensalism		(D)	Because lignin is a protein	
51.	Hemicellulose is mainly degraded by:		55.	Which of the following is an anaerobic liquid		
	(A)	Proteases		waste treatment method?		
	(B)	Lipases		(A)	Trickling filter	
	(C)	Xylanase, mannanase,		(B)	Oxidation pond	
		arabinofuranosidase		(C)	Septic tank	
	(D)	Ureases		(D)	Activated sludge process	
52.		process of controlled aerobic position of organic waste is called:	56.	During the thermophilic stage of composting, temperature usually reaches:		
	(A)	Anaerobic digestion		(A)	10–20 °C	
	(B)	Composting		(B)	25–30 °C	
	(C)	Pyrolysis		(C)	60–70 °C	
	(D)	Sanitary landfilling		(D)	Above 100 °C	
L0409	03T/60	(9)		[P.T.O.]	

- 57. Which microbial group would be most useful for bioconversion of agricultural residues into biofuels? (A) Methanogens only (B) Nitrifying bacteria Cellulolytic and hemicellulolytic (C) fungi (D) Sulfate-reducing bacteria 58. If sludge is not recycled back in Activated Sludge Process, the system will: (A) Become more efficient (B) Lose microbial biomass and
 - reduce treatment efficiency
 (C) Produce less effluent

Increase oxygen levels

- 59. Which nutrient is mainly removed in tertiary treatment using chemical precipitation?
 - (A) Nitrogen
 - (B) Sulfur

(D)

- (C) Carbon
- (D) Phosphorus
- 60. Incineration helps in:
 - (A) Volume reduction of solid waste
 - (B) Recycling metals
 - (C) Removing heavy metals from water
 - (D) Reducing air pollution
- 61. Wastewater containing high organic load (BOD) is best treated by:
 - (A) Filtration only

- (B) Biological treatment
- (C) UV radiation
- (D) Coagulation
- 62. If two microbes coexist but both suffer nutrient limitation, this is:
 - (A) Commensalism
 - (B) Competition
 - (C) Mutualism
 - (D) Predation
- 63. Which process in advanced activated sludge treatment is primarily responsible for nitrogen removal?
 - (A) Nitrification-denitrification
 - (B) Adsorption
 - (C) Filtration
 - (D) Sedimentation
- 64. Which factor affects the efficiency of UV disinfection?
 - (A) Turbidity of wastewater
 - (B) Oxygen concentration
 - (C) Temperature only
 - (D) Chlorine dose
- 65. Which of the following is in situ bioremediation?
 - (A) Composting
 - (B) Biopiles
 - (C) Landfarming
 - (D) Bioventing

- 66. Which limitation is associated with cometabolism?
 - (A) Pollutant acts as a growth substrate
 - (B) Generates high biomass
 - (C) Requires addition of secondary substrates (e.g., methane, toluene)
 - (D) Works only with sugars
- 67. Which microbial product is widely used for industrial delignification in pulp and paper industries?
 - (A) Laccase from white-rot fungi
 - (B) Urease from Bacillus
 - (C) Catalase from E. coli
 - (D) Amylase from Aspergillus
- 68. Which of the following is not a xenobiotic?
 - (A) Polychlorinated biphenyls (PCBs)
 - (B) DDT
 - (C) Lignin
 - (D) Polycyclic aromatic hydrocarbons (PAHs)
- 69. The process of heavy metal accumulation by microorganisms is called:
 - (A) Bioleaching
 - (B) Biosorption
 - (C) Biodegradation
 - (D) Biooxidation
- 70. Which term refers to non-symbiotic microbes that enhance plant growth?
 - (A) Pathogens
 - (B) PGPR

- (C) Mycorrhizae
- (D) Saprophytes
- 71. In sanitary landfills, the bottom liner is used to:
 - (A) Increase the waste volume
 - (B) Prevent leachate contamination of groundwater
 - (C) Reduce methane production
 - (D) Enhance composting
- 72. Which of the following is not a typical function of PGPR?
 - (A) Induced systemic resistance (ISR)
 - (B) Siderophore production
 - (C) Pathogen toxin release
 - (D) Nitrogen fixation
- 73. Phosphate-solubilizing PGPR mainly use which mechanism?
 - (A) Enzymatic oxidation of P
 - (B) Organic acid production lowering soil pH
 - (C) Conversion of phosphate into gas
 - (D) Siderophore chelation
- 74. Detoxification of heavy metals in microbes often involves:
 - (A) Precipitation, sequestration, or enzymatic transformation
 - (B) Oxidation of sugars
 - (C) Formation of volatile organic compounds
 - (D) Complete degradation into CO₂ and water

75.	Which signaling molecules initiate symbiosis				(C)	Kinases	
	betwee	n legumes and rhizobia?			(D)	Lipases	
	(A)	Auxins		80.	The id	he ideal storage temperature for most	
	(B)	Cytokinins			biofertilizers is:		
	(C)	Flavonoids and Nod factors			(A)	-20°C	
	(D)	Ethylene			(B)	4 – 25°C	
76.	Which of the following microorganisms is		ns is		(C)	40 – 45°C	
	widely used in degradation of xenobiotics?		tics?		(D)	Room temperature without control	
	(A)	Bacillus subtilis		81.		of the following is a common	
	(B)	Pseudomonas putida		•	symptom of fungal leaf spot diseases?		
	(C)	Lactobacillus bulgaricus			(A)	Wilting	
	(D)	Saccharomyces cerevisiae			(B)	Tumor-like growths	
77.	ACC deaminase produced by PGPR helps		nelps		(C)	Yellowing spots	
	in plant	nt growth by:			(D)	Circular necrotic spots with	
	(A)	Reducing ethylene levels	s in		(D)	concentric rings	
		stressed plants		82.	Anthracnose symptoms are typically seen		
	` ,	Increasing phosph	orus		as:	shoot symptoms are typically soon	
	(0)	solubilization			(A)	Sunken necrotic lesions on fruits, stems, and leaves	
	(C)	Enhancing photosynthetic rate)				
	(D)	Fixing atmospheric nitrogen			(B)	Rust pustules	
78.	Frankia forms nitrogen-fixing symbiosis with:				(C)	Soft watery rot	
	(A)	Cereal crops			(D)	White mycelial mats	
	(B)	Actinorhizal plants		02	` '	•	
	(C)	Legumes only		83.	Fusarium oxysporum primarily survives in soil as:		
	(D)	Rice roots					
79.	Which group of enzymes is most important				(A)	Chlamydospores	
	in xenc	n xenobiotic degradation?			(B)	Conidia	
	(A)	Proteases			(C)	Ascospores	
	(B)	Monooxygenases & dioxygen	ases		(D)	Zygospores	
L0409	03T/60		(12)			

84. Which stage of Pseudomonas syringae is responsible for initiating disease under wet conditions? (A) Epiphytic population (B) Endophytic colonization (C) Seed-borne bacteria (D) Soil survival 85. What type of genome does TMV have? (A) Double-stranded DNA (B) Single-stranded DNA (C) Single-stranded RNA (D) Double-stranded RNA 86. Which stage of Puccinia graminis is responsible for repeating infection cycles during the growing season of wheat? (A) Teliospores (B) Basidiospores (C) **Urediniospores** (D) Aeciospores 87. Why is TMV considered a systemic virus? (A) It only infects one leaf (B) It spreads through xylem and phloem to infect the entire plant (C) It produces spores in the soil (C) It survives as a seed-borne fungus 88. How is CaMV transmitted between plants?

Seed transmission

(A)

(B) Soil-borne fungi (C) Aphids in a non-circulative manner (D) Through wounds only Puccinia graminis overwinters in which stage? Urediniospore (A) (B) Teliospore (C) Aeciospore (D) Basidiospore Bacillus thuringiensis (Bt) produces: Endotoxins (Cry proteins) (A) Mycotoxins (B) (C) Alkaloids (D) **Antibiotics** How does Fusarium oxysporum typically enter a host plant? (A) Through stomata Through wounds or root tips (B) (C) Through leaf surface (D) Through flowers Which enzyme is essential for CaMV replication? (A) DNA-dependent RNA polymerase (B) Reverse transcriptase (C) RNA-dependent RNA polymerase

DNA polymerase

(D)

89.

90.

91.

92.

- 93. For soil-borne fungal diseases in crops, which microbial biopesticide is recommended?
 - (A) Bacillus subtilis
 - (B) Trichoderma harzianum
 - (C) Metarhizium anisopliae
 - (D) NPV
- 94. Why is turning of compost piles important?
 - (A) To increase nitrogen
 - (B) To control pH
 - (C) To maintain aeration and uniform decomposition
 - (D) To add extra moisture
- 95. For remediation of shallow unsaturated soil contaminated with jet fuel, the most effective method would be:
 - (A) Bioventing
 - (B) Biosparging
 - (C) Pump-and-treat
 - (D) Soil excavation
- 96. Which characteristic differentiates biopesticides from chemical pesticides?
 - (A) Non-biodegradability
 - (B) Broad-spectrum toxicity
 - (C) High specificity and ecofriendliness
 - (D) Longer residual toxicity

- 97. Which combination of spores makes Puccinia graminis a heteroecious and macrocyclic rust?
 - (A) Urediniospore, Teliospore
 - (B) Urediniospore, Teliospore,Basidiospore, Aeciospore,Pycniospore
 - (C) Teliospore, Basidiospore
 - (D) Aeciospore, Urediniospore
- 98. Which of the following is an example of microbial detoxification of arsenic?
 - (A) Conversion of As(III) to less toxic As(V)
 - (B) Conversion of As into CO₂
 - (C) Uptake and storage in vacuoles
 - (D) Precipitation as arsenic sulfide
- 99. In biosparging, which gas is typically injected into the saturated zone?
 - (A) Carbon dioxide
 - (B) Oxygen
 - (C) Nitrogen
 - (D) Methane
- 100. If wastewater has high BOD, it indicates:
 - (A) High organic load and low dissolved oxygen
 - (B) Low organic pollution
 - (D) No microbial activity
 - (D) Only inorganic pollutants present

Rough Work

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।