Roll. No	Question Booklet Number
O.M.R. Serial No.	

M.Sc. (SEM.-III) (NEP) (SUPPLE.) EXAMINATION, 2024-25 MICROBIOLOGY (Microbial Genetics)

Paper Code							
L	0	4	0	9	0	1	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee:

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

- 1. A mutation is best defined as:
 - (A) Any heritable change in the genome
 - (B) A temporary alteration in phenotype
 - (C) A permanent change in protein structure
 - (D) All of the above
- A spontaneous mutation in bacteria usually arises due to:
 - (A) Radiation exposure
 - (B) Replication errors
 - (C) Low salt conditions
 - (D) Carbon rich sources
- Which type of mutation involves substitution of one base for another without altering the amino acid?
 - (A) Missense mutation
 - (B) Silent mutation
 - (C) Nonsense mutation
 - (D) Frameshift mutation
- 4. Which mutation type converts a codon to a stop codon?
 - (A) Missense mutation
 - (B) Back mutation
 - (C) Frameshift mutation
 - (D) Nonsense mutation

- 5. An auxotrophic mutant differs from wild type in that it:
 - (A) Cannot utilize oxygen
 - (B) Grows faster than wild type
 - (C) Requires additional nutritional supplement
 - (D) Resists antibiotics
- 6. A mutant that grows at 30°C but not at 42°C is a:
 - (A) Nutritional mutant
 - (B) Revertant mutant
 - (C) Auxotrophic mutant
 - (D) Temperature-sensitive mutant
- 7. Which of the following is not a conditional lethal mutant?
 - (A) Cold-sensitive mutant
 - (B) Temperature-sensitive mutant
 - (C) Nutritional auxotroph
 - (D) Antibiotic-resistant mutant
- 8. In bacterial genetics, a prototroph is defined as:
 - (A) A mutant requiring supplements
 - (B) The wild-type strain capable of synthesizing all growth factors
 - (C) A temperature-sensitive mutant
 - (D) A revertant strain

9. UV light primarily induces mutations in DNA 13. A reversion mutation is best described as: by forming: A mutation that suppresses another (A) mutation at a different site (A) Double-strand breaks (B) A mutation induced by mutagens (B) Thymine dimers (C) A mutation causing frameshifts (C) Guanine oxidation products (D) A mutation that restores the original (D) Insertion sequences DNA sequence or phenotype 14. A mutation in a different gene that 10. The chemical mutagen 5-bromouracil acts compensates for the effect of the first as a: mutation is called: (A) Alkylating agent (A) True reversion (B) Intercalating agent (B) Silent mutation (C) Base analog (C) Suppressor mutation (D) Nonsense mutation (D) Crosslinking agent 15. Intragenic suppression occurs when: 11. Nitrous acid induces mutations by: (A) The suppressor mutation is in a (A) Deaminating bases different gene The mutation restores DNA (B) Alkylating guanine (B) sequence Breaking sugar-phosphate bonds (C) (C) The original mutation is eliminated (D) Forming bulky adducts by repair 12. Which mutagen alkylates guanine leading (D) Both mutations are in the same gene to mispairing? 16. Which enzyme directly reverses UVinduced thymine dimers in bacteria? (A) EMS (ethyl methanesulfonate) (A) DNA glycosylase (B) **UV** light (B) Photolyase (C) X-rays **DNA** ligase (C)

(D)

5-bromouracil

(D)

RecA

17.	Direct reversal of DNA damage is considered unique because:			Which enzyme fills the gap after excision repair?		
	(A)	It requires nucleotide excision		(A)	DNA ligase	
	(B)	It does not involve DNA polymerase		(B)	DNA glycosylase	
	(C)	It removes damage without cutting		(C)	UvrC	
		the DNA backbone		(D)	DNA polymerase	
	(D)	It only occurs in eukaryotes	22.		tch repair primarily corrects errors	
18.		enzyme initiates base excision repair		made	during:	
	by rem	oving damaged bases?		(A)	Transcription	
	(A)	Photolyase		(B)	Translation	
	(B)	DNA glycosylase		(C)	Recombination	
	(C)	DNA polymerase		(D)	DNA replication	
	(D)	DNA ligase	23.	Which protein unwinds the mismatched D		
19.	In nucle		region coli?	during mismatch repair in E.		
	(A)	UvrC		(A)	MutS	
	(B)	UvrB		(B)	MutL	
	` '			(C)	UvrD helicase	
	(C)	UvrA		(D)	RecA	
	(D)	UvrD	24.	Which	protein is essential for homologous	
20.	Base e	Base excision repair primarily fixes:		recombination repair in bacteria?		
	(A)	Bulky adducts		(A)	RecA	
	(B)	Thymine dimers		(B)	UvrC	
	(C)	Single modified bases		(C)	MutS	
	(D)	Double-strand breaks		(D)	Ligase	
L0409	01T/60	(:	5)		[P.T.O.]	

25.	Double-strand breaks are repaired by:			When two mutations complement each other,		
	(A)	Photoreactivation		it means:		
	(B)	(B) Homologous recombination or non-homologous end joining		(A)	They occur in the same gene	
	()			(B)	They produce identical phenotypes	
	(C)	Base excision repair		(C)	They restore wild-type function when combined in the same cell	
	(D)	SOS repair only		(D)	They cannot be studied further	
26.	SOS ı	repair in bacteria is induced under:	30.	If two	auxotrophic yeast mutants (mutant A	
	(A)	Low temperature		and mutant B) grow on minimal mediu		
	(B)	Normal DNA replication			nating, the result suggests:	
	(C)	Excess nutrients		(A)	They are allelic	
				(B)	They are lethal mutations	
	(D)	UV-induced DNA damage		(C)	They cannot be mapped	
27.	Which protein is the main inducer of SOS			(D)	They complement each other	
	respo	nse in E. coli?			(mutations in different genes)	
	(A)	SecA	31.	The F plasmid in E. coli is prima		
	(B)	RecA		responsible for:		
	(C)	UvrD		(A)	Antibiotic resistance	
				(B)	Colicin production	
	(D)	MutS		(C)	Conjugation	
28.	Comp	Complementation analysis is primarily used to determine:		(D)	Restriction-modification	
	to det			Cells containing an integrated F plasmid int		
	(A)	Mutation rate		the chromosome are called:		
	(B)	The replication origin		(A)	F^- cells	
	(C)	The ploidy of an organism		(B)	F' cells	
		Whether two mutations are in the		(C)	Hfr cells	
	(D)	same gene or different genes		(D)	R cells	

33.	Which form of F plasmid carries			Plasmid incompatibility means:		
	chromo genes?	nosomal genes along with plasmid s?		(A)	Two plasmids cannot stably coexist in one host	
	(A)	F ⁻		(B)	Plasmid cannot replicate	
	(B)	F'		(C)	Plasmid causes host death	
	(C)	F^+		(D)	Plasmid prevents transformation	
	(D)	Col plasmid	38	The Inc	cP plasmid is known for:	
34.	Col pla	smids encode:		(A)	Narrow host range	
	(A)	Fertility factors		(B)	Wide host range	
	(B)	Antibiotic resistance		(C)	Antibiotic production	
	(C)	Colicins (bacteriocins)		(D)	Colicin production	
	(D)	Virulence toxins	39	Incomp	patibility of plasmids is mainly due to:	
35.	R plasn	nids are important because they:		(A)	Competition for replication	
	(A)	Confer resistance to antibiotics			machinery	
	(B)	Produce toxins		(B)	Conjugation interference	
	(C)	Enhance motility		(C)	Restriction enzymes	
	(D)	Carry metabolic genes		(D)	Transposon insertion	
36.	Col plasmids benefit the host by:		40	A plasmid able to replicate in both Gramnegative and Gram-positive bacteria is:		
	(A)	Providing antibiotic resistance		(A)	Narrow host range plasmid	
	(B)	Allowing conjugation		(B)	Broad host range plasmid	
	(C)	Killing competing bacteria		(C)	Cryptic plasmid	
	(D)	Producing virulence factors		(D)	Conditional plasmid	
L04090	01T/60		(7)		[P.T.O.]	

41. A shuttle vector has: 46. An ideal plasmid cloning vector should have: (A) two selectable markers only Multiple cloning sites, selectable (A) (B) no replication system marker, ori (C) a single oriC Only antibiotic resistance (B) two origins of replication for different (D) Only Conjugation genes (C) hosts 42. Plasmid copy number refers to: (D) Colicin operon (A) number of plasmids per host cell 47. The uptake of free, naked DNA fragments from the environment by a bacterial cell is (B) number of genes per plasmid called: (C) number of proteins expressed (A) Conjugation (D) number of oriT sites Transformation (B) 43. High copy number plasmids usually: Transduction (C) (A) Have strict replication control Transposition (D) (B) Have relaxed replication control 48. (C) Require host factors strictly Griffith's experiment with Streptococcus pneumoniae demonstrated: (D) Cannot be used in cloning (A) **DNA** replication 44. pUC19 is an example of: Transduction (B) (A) Low copy number plasmid (C) Conjugation (B) High copy number plasmid (C) Cryptic plasmid (D) Principle of transformation (D) Broad host range plasmid 49. Natural competence in bacteria is regulated by: 45. Curing of plasmid means: (A) **Plasmids** (A) Integration into host chromosome Increase in copy number Ribosomes (B) (B) (C) Loss of plasmid from host cells (C) Bacteriophages (D) Expression of plasmid genes Competence factors (D)

(8)

54. Transfer of bacterial DNA from one cell to 50. Conjugation in bacteria was first another by bacteriophage is called: demonstrated in E. coli by : (A) Conjugation Griffith (A) Transformation (B) (B) Lederberg and Tatum (C) Transduction (C) Watson and Crick Recombination (D) (D) Avery and MacLeod 55. Generalized transduction can transfer: 51. The transfer of DNA during conjugation (A) only specific bacterial genes requires: (B) only transposons (C) only plasmids (A) Pilus (D) asny part of the bacterial genome (B) Ribosome 56. Which bacteriophage is a model for studying (C) Cell wall porins generalized transduction? (D) DNA polymerase III λ phage Hfr strains differ from F⁺ strains in that: 52. (B) T4 (C) P22 (A) they lack plasmids All of the above (B) F-plasmid is integrated into the 57. Co-transduction frequency is used for: chromosome (A) Mapping gene order (C) they cannot form pili Studying plasmid transfer (B) (D) they only undergo transduction (C) **Detecting mutations** 53. Interrupted mating experiments are useful (D) Inhibiting recombination for: 58. Homologous recombination in bacteria is (A) Measuring transformation frequency mediated by: (A) RecA protein (B) Mapping bacterial genes Pilin protein (B) (C) Studying protein synthesis DNA ligase (C) (D) Detecting transposons (D) Transposase

59. Branch migration in recombinati		migration in recombination requires:	equires: 64.		Retrotransposons transpose via an:		
	(A)	F pilus		(A)	RNA intermediate		
	(B)	Only DNA ligase		(B)	Only DNA intermediate		
	(C)	RNA polymerase		(C)	Protein intermediate		
	(D)	RecBCD enzyme complex		(D)	Ribosome intermediate		
60.	Resolution of Holliday junction produces: (A) Only parental molecules		65.	The m	The movement of transposons contributes		
				to:			
	(B)	Either crossover or non-crossover		(A)	Genetic variation		
	(D)	products		(B)	Genome rearrangements		
	(C)	Only recombinant DNA		(C)	Antibiotic resistance spread		
		•		(D)	All of the above		
	(D)	Only plasmids	66.	•	age genome is composed of:		
61.	Transp	osons are also called:		(A)	Linear double-stranded DNA with		
	(A)	Jumping genes			terminal repeats		
	(B)	Silent genes		(B)	Linear single-stranded RNA		
	(C)	Mobile plasmids		(C)	Circular double-stranded DNA		
	(D)	Integrons		(D)	Circular single-stranded DNA		
62.	The enzyme essential for transposition is:		67.	Which enzyme is carried by bacteriophage			
	(A)	DNA ligase			nitiate transcription?		
		•		(A)	Host RNA polymerase		
	(B)	DNA helicase		(B)	T7 RNA polymerase		
	(C)	Transposase		(C)	DNA polymerase III		
	(D)	DNA primase		(D)	Reverse transcriptase		
63.	Non-re	plicative transposition is also known	68.	Phage	T4 uses which special DNA base		
	as:			instead	I of cytosine?		
	(A)	Copy-and-paste mechanism		(A)	5-methylcytosine		
	(B)	Cut-and-paste mechanism		(B)	Hydroxymethylcytosine		
	(C)	Rolling-circle mechanism		(C)	Uracil		
	(D)	Site-specific recombination		(D)	Pseudouridine		
	(0)	one specific recombination					

(10)

69.	Which of the following is TRUE about T7 phage replication?		73.		Site of integration of $ \chi $ prophage in E. coli genome is:		
	(A)	Replication begins at multiple			(A)	lac operon	
		origins			(B)	oriC	
	(B)	It does not require DNA polymerase			(C)	trp operon	
	(C)	Only It uses host primase			(D)	attB site near gal/bio region	
	(D)	Replication begins at a single defined origin	74	•		ion of λ prophage is triggered by:	
70.	Tail fil	pers of T4 phage are responsible for:			(A)	Low temperature	
	(A)	DNA replication			(B)	Host DNA damage and SOS response	
	(B)	Transcription regulation			(C)	Nutrient abundance	
	(C)	Host cell recognition and adsorption					
	(D)	Assembly of viral proteins			(D)	Absence of Cro protein	
71.	The d	lecision between lysis and lysogeny	75		P1 ph	age maintains itself in E. coli as:	
	in λ	phage is mainly regulated by:			(A)	Integrated prophage	
	(A)	Cro and CI proteins			(B)	Plasmid prophage with partitioning	
	(B)	RecA protein				system	
	(C)	cAMP-CAP complex			(C)	RNA replicon	
	(D)	LexA protein			(D)	Episome without partitioning	
72.	Which	n protein maintains lysogeny in χ	76		Phage	e P1 is used in molecular biology as:	
	phage	9?			(A)	A generalized transducing phage	
	(A)	Cro			(B)	A specific cloning vector for	
	(B)	CI repressor			()	eukaryotes	
	(C)	N protein			(C)	RNA phage system	
	(D)	O protein			(D)	Reverse transcriptase source	
L0409	901T/60	0	11)			[P.T.O.]	

77.	Prions are infectious agents made of:			Toxin-	Toxin-antitoxin systems help in antiphage		
	(A)	DNA		defens	defense mainly by:		
	(B)	RNA		(A)	Restricting DNA methylation		
	(C)	Only Proteins		(B)	Blocking phage adsorption		
	(D)	Protein and lipid		(C)	Inducing dormancy or programmed		
78.	Creutzfeldt-Jakob disease is caused by:			()	cell death		
	(A)	Virus infection		(D)	Producing CRISPR spacers		
	(B)	Prions	83.	. ,	RISPR locus in bacteria consists of:		
	(C)	Bacteria	03.	(A)			
	(D)	Protozoa	rotozoa		Only Cas genes		
79.	The ada	aptive immunity in bacteria is primarily		(B)	Repeats and spacers		
	mediated by:			(C)	Only repeats		
	(A)	Restriction-modification system		(D)	Only spacers		
	(B)	CRISPR-Cas system	84.	Protos	pacer Adjacent Motif (PAM) is		
	(C)	Toxin-antitoxin system	01.		essential for:		
	(D)	Abortive infection system					
80.	Which of the following is an example of			(A)	CRISPR repeat transcription		
		pacterial immunity?		(B)	Host DNA protection		
	(A)	CRISPR-Cas		(C)	Spacer integration		
	(B)	Restriction-modification system		(D)	Cas protein recognition of foreign DNA		
	(C)	Memory spacer acquisition					
	(D)	Protospacer adjacent motif recognition	85.	•	t mutation that replaces a purine with		
81.	Restriction-modification systems distinguish				er purine, or a pyrimidine with another dine is called:		
		NA from phage DNA by:		(A)	Nonsense mutation		
	(A)	PAM recognition		. ,			
	(B)	Cas protein cleavage		(B)	Silent mutation		
	(C)	CRISPR spacer complementarity		(C)	Transition mutation		
	(D)	DNA methylation patterns		(D)	Transversion		
L04090	01T/60	(12)				

86. The term "relaxed plasmid" usually refers to 90. The synthesis of polynucleotide chain of mRNA is catalyzed by the enzyme: plasmids that: (A) have very low copy numbers RNA helicase (A) (B) have high copy numbers without (B) RNA polymerase strict control DNA polymerase (C) (C) integrate frequently into host DNA helicase (D) genome (D) do not replicate at all 91. Which of the following best describes a plasmid? 87. Name the repair system which involves the removal of the damaged segment of DNA: (A) Linear RNA molecule in prokaryotes Recombinational repair (A) Circular double-stranded DNA (B) (B) molecule independent of the Direct repair chromosome (C) Excision repair (C) Protein complex aiding DNA (D) Mismatched repair replication 88. The correction of changes in DNA by a set (D) Short peptide molecule for cell of process known as: signaling (A) Replication 92. Which of the following is a key feature of (B) DNA repair plasmid replication? (C) Translation (A) It requires the host chromosome (D) Transcription origin of replication. 89. The term Hfr strain in E. coli refers to: (B) It stops during cell division. (A) Cell with multiple plasmids It always integrates into the host (C) High frequency recombination strain (B) genome. (C) Bacterium resistant to transformation (D) It occurs independently of the host (D) Bacterium lacking any plasmid chromosome.

93. The term "broad host range plasmid" refers 97. The enzyme responsible for transposition to plasmids that can: in IS elements is: (A) only replicate in a single species (A) Ligase (B) only integrate into host genome (B) Transposase (C) replicate in multiple bacterial (C) Reverse transcriptase species (D) Helicase only transfer through transformation (D) 94. Which mechanism ensures equal plasmid 98. Which of the following is a characteristic distribution to daughter cells during cell feature of IS elements? division? (A) Terminal inverted repeats (A) Rolling circle replication (B) Origin of replication (B) Conjugation (C) Ribosomal binding site (C) Partitioning system (par genes) (D) Antibiotic resistance gene (D) DNA repair system 95. The phenomenon where two plasmids 99. Transposition is generally categorized as: cannot stably coexist in the same cell is Conservative and replicative (A) called: Conservative and mutational (B) (A) Plasmid incompatibility Plasmid recombination (B) (C) Integrative and excisive (C) Plasmid conjugation (D) Parallel and divergent Plasmid transformation (D) 100. The discovery of transposons was first made 96. Plasmids that carry genes conferring in maize by: antibiotic resistance are called: (A) Watson and Crick R plasmids (A) Barbara McClintock (B) (B) F plasmids (C) Joshua Lederberg (C) Col plasmids Virulence plasmids (D) Frederick Griffith (D)

(14)

Rough Work

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।