Roll. No							Question Booklet Number	
O.M.R. Serial No.								

M.Sc. (SEM.-IV) (NEP) (SUPPLE.)EXAMINATION, 2024-25 BOTANY

(Advanced Genetics, Molecular Biology)

	I	Pap	er	C	od	e	
B	0	4	1	0	0	1	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

1.	Which	of the following correctly represents	4.	The histone octamer of a nucleosome is			
	the hi	erarchical organization of genetic	5.	comp	osed of:		
	materi	al from smallest to largest?		(A)	H1, H2A,	H2B, H3, H4	
	(A)	Nucleotide → Chromosome → DNA → Histone → Chromatin Nucleotide → DNA →		(B)	H2A, H2B	, H3, H4 (two copie	s each)
				(C)	H1, H2A,	H2B, H3 (two copie	s each)
	(B)			(D)	H1, H3, H	14, H2B	
		Nucleosome \rightarrow Chromatin \rightarrow Chromosome		Which	level of DN	IA packaging is de	scribed
	(C)	DNA \rightarrow Nucleotide \rightarrow		as "beads on a string"?			
	(-)	Nucleosome \rightarrow Chromatin \rightarrow		(A)	Nucleosome		
		Chromosome		(B)	Solenoid		
	(D)	Nucleotide \rightarrow Nucleosome \rightarrow		(C)	30 nm fib	re	
		$DNA \longrightarrow Chromatin \longrightarrow Chromosome$		(D)	Chromatio	d	
2.	In euk	caryotic chromatin, DNA is wrapped	6.	The 30 nm chromatin fiber is primarily			
	aroun	d which protein core to form a		stabilized by:			
	nucle	osome?		(A)	DNA meth	nylation	
	(A)	Actin		(B)	Histone H1		
	(B)	Tubulin		(C)	RNA polymerase		
	(C)	Histone			Topoisomerase		
	(D)	Keratin	7.	(D)			
3.	How n	nany base pairs of DNA are wrapped	1.	Euchromatin is characterized by:			
	around	d a histone octamer in a nucleosome		(A)	Highly	condensed	and
	core p	particle?			•	ionally inactive	
	(A)	100 bp		(B)	Less	condensed	and
	(B)	146 bp		(0)		ionally active	
	(C)	200 bp		(C)	Complete	ly uncoiled and ir	active
	(D)	300 bp		(D)	Found on	lly in prokaryotes	

(3)

[P.T.O.]

B041001T-A/84

8.		modification is generally associatene activation?	ed	12.		of the following is NOT part of a psome core particle?	
	_						
	(A)	DNA methylation			(A)	H2A	
	(B)	Histone acetylation			(B)	H3	
	(C)	Histone deacetylation			(C)	H1	
	(D)	Chromatin condensation			(D)	H4	
9.	In Plant, chloroplast DNA is organized a):	13.	Which structural form of DNA is the mos		
	(A) Linear double-stranded DNA				common under physiological conditions it cells?		
	(B)	Circular double-stranded DNA			(A)	A-DNA	
	(C)	Circular single-stranded DNA			(B)	B-DNA	
	(D)	Linear single-stranded DNA			(C)	Z-DNA	
10.	The co	mplete set of DNA in a cell, includi	ng		(D)	C-DNA	
	nuclear and extranuclear DNA, is called			14.	Which enzyme relieves torsional strain		
	(A)	Chromatin			during	DNA packaging?	
	(B)	Genome			(A)	DNA polymerase	
	(C)	Transcriptome			(B)	DNA ligase	
	(D)	Proteome			(C)	Topoisomerase	
11.	The ch	nemical bond linking nucleotides in	ı a		(D)	Helicase	
	DNA strand is:			15.	DNA supercoiling is essential because it:		
	(A)	Hydrogen bond			(A)	Increases mutation rate	
	(B)	Glycosidic bond			(B)	Helps compact DNA into the cell	
	(C)	Phosphodiester bond			(C)	Stops transcription completely	
	(D)	Peptide bond			(D)	Prevents replication	
B0410	001T-A/	/84	(4)			

- 16. Which of the following best defines epigenetics?
 - (A) Study of DNA sequence changes over time
 - (B) Study of heritable changes in gene expression without change in DNA sequence
 - (C) Study of mutations caused by environmental factors
 - (D) Study of genetic recombination events
- 17. DNA methylation usually occurs at which nucleotide sequence in mammals?
 - (A) CpG dinucleotides
 - (B) AT-rich sequences
 - (C) Non-coding RNAs
 - (D) Telomeric repeats
- 18. Epigenetics plays a crucial role in:
 - (A) Cell differentiation
 - (B) Genomic imprinting
 - (C) X-chromosome inactivation
 - (D) All of the above
- 19. In the scope of epigenetics, "epigenome" refers to:
 - (A) Total DNA sequence of an organism
 - (B) Complete set of epigenetic modifications in a cell
 - (C) All expressed mRNAs in a cell
 - (D) Set of chromosomal rearrangements

- 20. Which enzyme catalyzes DNA methylation?
 - (A) DNA polymerase
 - (B) DNA methyltransferase (DNMT)
 - (C) RNA polymerase II
 - (D) Histone acetyltransferase (HAT)
- 21. Environmental factors can influence epigenetic changes. Which is NOT an example?
 - (A) Diet
 - (B) Stress
 - (C) Temperature
 - (D) Point mutations
- 22. Chromatin remodeling refers to:
 - (A) Permanent changes in DNA sequence
 - (B) ATP-dependent alteration of chromatin structure to regulate DNA accessibility
 - (C) Histone mutation events
 - (D) Only methylation of DNA
- 23. The primary purpose of chromatin remodelling is to:
 - (A) Facilitate transcription, replication, and DNA repair
 - (B) Change the genetic code
 - (C) Create permanent mutations
 - (D) Destroy histone proteins

- 24. The energy for chromatin remodelling is derived from:
 - (A) ATP hydrolysis
 - (B) GTP hydrolysis
 - (C) Proton gradients
 - (D) Oxidative phosphorylation directly
- 25. A key difference between histone modification and chromatin remodelling is that:
 - (A) Histone modification changes DNA sequence; chromatin remodelling does not
 - (B) Chromatin remodelling moves or ejects nucleosomes, histone modification alters histone tails chemically
 - (C) Both are permanent changes in genome structure
 - (D) Histone modification requires ATP, remodelling does not
- 26. Histone modifications primarily occur on:
 - (A) Histone N-terminal tails
 - (B) DNA backbone
 - (C) Ribosomal proteins
 - (D) tRNA molecules
- 27. Which is NOT a common type of histone modification?
 - (A) Acetylation
 - (B) Methylation

- (C) Phosphorylation
- (D) Replication
- 28. Which enzyme catalyzes the addition of acetyl groups to histone lysine residues?
 - (A) Histone methyltransferase (HMT)
 - (B) Histone acetyltransferase (HAT)
 - (C) Histone deacetylase (HDAC)
 - (D) DNA methyltransferase (DNMT)
- 29. Removal of acetyl groups from histones is carried out by:
 - (A) Histone acetyltransferases
 - (B) Histone deacetylases (HDACs)
 - (C) Histone kinases
 - (D) Ubiquitin ligases
- 30. Which amino acid residues are most commonly methylated in histones?
 - (A) Lysine and arginine
 - (B) Serine and threonine
 - (C) Proline and alanine
 - (D) Cysteine and methionine
- 31. Which technique is most commonly used to Study DNA.protein interactions in vitro?
 - (A) ChIP-seq
 - (B) EMSA (Electrophoretic Mobility Shift Assay)
 - (C) DNase footprinting
 - (D) Western blot

- 32. In EMSA (Electrophoretic Mobility Shift Assay), the mobility of DNA in a gel is:
 - (A) Increased when bound to protein
 - (B) Decreased when bound to protein
 - (C) Unchanged regardless of protein binding
 - (D) Completely blocked by protein binding
- 33. Which method is used to identify the exact binding site of a transcription factor on DNA?
 - (A) Northern blotting
 - (B) DNase I footprinting
 - (C) EMSA
 - (D) Western blotting
- 34. ChIP (Chromatin Immunoprecipitation) is used to study:
 - (A) DNA replication origins
 - (B) Protein.DNA interactions in vivo
 - (C) RNA stability
 - (D) Protein.protein interactions
- 35. In DNase I footprinting, the principle is based on:
 - (A) Enzyme modifying DNA bases
 - (B) Protection of DNA region bound by protein from nuclease cleavage

- (C) Incorporation of labeled nucleotides
- (D) Separation of proteins by SDS-PAGE
- 36. Which method allows detection of chromatin accessibility across the genome?
 - (A) DNase-seq
 - (B) ChIP-seq
 - (C) EMSA
 - (D) Western blot
- 37. Which among the following is not a method for DNA.protein interaction study?
 - (A) EMSA
 - (B) DNase footprinting
 - (C) ChIP
 - (D) Southern blotting
- 38. In ChIP experiment, the protein.DNA complexes are first:
 - (A) Digested with RNase
 - (B) Cross-linked using formaldehyde
 - (C) Amplified by PCR
 - (D) Separated by SDS-PAGE
- 39. In DNase I footprinting, the "footprint" appears as:
 - (A) Enhanced cleavage at proteinbinding site
 - (B) No bands at protein-binding site
 - (C) Stronger fluorescence at binding site
 - (D) Shift in DNA mobility

- 40. Which of the following is a limitation of EMSA?
 - (A) Cannot determine binding site sequence
 - (B) Cannot detect DNA.protein interaction
 - (C) Requires sequencing
 - (D) Only works in vivo
- 41. Which of the following is a limitation of DNase I footprinting?
 - (A) Cannot be used with purified proteins
 - (B) Cannot identify precise DNA binding sites
 - (C) Requires prior knowledge of binding sequence
 - (D) Cannot be used with short oligonucleotides
- 42. The main principle of ChIP-seq is:
 - (A) Separation of RNA by size
 - (B) Sequencing cDNA
 - (C) Immunoprecipitation of proteinbound DNA, followed by sequencing
 - (D) Measuring RNA degradation rates

- 43. In EMSA, what is the typical label used to visualize DNA fragments?
 - (A) Fluorescent or radioactive tags
 - (B) Antibody probes
 - (C) Ribosomal RNA
 - (D) GFP reporter
- 44. Which method relies on enzymatic digestion patterns to determine protein binding regions?
 - (A) EMSA
 - (B) DNase I footprinting
 - (C) ChIP-seq
 - (D) Northern blot
- 45. Southern blotting is primarily used for:
 - (A) RNA detection
 - (B) Protein detection
 - (C) DNA detection
 - (D) Carbohydrate detection
- 46. The inventor of the Southern blotting technique is:
 - (A) Frederick Sanger
 - (B) Edwin Southern
 - (C) Maxam and Gilbert
 - (D) Kary Mullis

In Southern blotting, the DNA is first: (B) Detection of pyrophosphate release converted into light (A) Transcribed into RNA (C) Gel electrophoresis (B) Separated by SDS-PAGE (D) Southern blot (C) Digested with restriction enzymes 51. Which enzyme is essential in and electrophoresed pyrosequencing to produce light? (D) Sequenced directly Luciferase (A) 48. Sanger fs di-deoxy sequencing method (B) Restriction endonuclease depends on: (C) RNA polymerase (A) Incorporation of fluorescent dyes (D) Reverse transcriptase (B) Chain termination by 52. Nanopore sequencing works on the dideoxynucleotides (ddNTPs) principle of: (C) RNA sequencing Chain termination (A) (D) Radioactive protein labeling Sequencing by synthesis (B) 49. Which of the following is NOT required in (C) Detection of changes in ionic current Sanger sequencing? as DNA passes through a nanopore (A) DNA polymerase (D) Hybridization with fluorescent probes (B) Template DNA 53. Which DNA sequencing method allows real-(C) Restriction enzymes time long read sequencing? (D) dNTPs + ddNTPs (A) Sanger sequencing In pyrosequencing, the DNA synthesis is 50. Pyrosequencing (B) monitored by: (C) Nanopore sequencing (A) Incorporation of radioactive (D) Maxam.Gilbert sequencing isotopes

47.

- 54. Which of the following is an advantage of nanopore sequencing over Sanger sequencing? 60. (A) Lower accuracy (B) Long read lengths in real time (C) Requires gel electrophoresis (D) Only detects RNA 55. Pyrosequencing detects: (A) Chain termination fragments (B) DNA fragments hybridized with 61. probes Release of (C) inorganic pyrophosphate (PPi) (D) Restriction enzyme digestion 56. Which of the following blots is used for RNA analysis? 62. (A) Southern blot (B) Northern blot Western blot (C) (D) Eastern blot 57. Which sequencing method is also known as the chain termination method? 63. (A) Maxam.Gilbert sequencing (B) Nanopore sequencing (C) Sanger sequencing (D) Pyrosequencing 58. The Southern blotting method combines: DNA hybridization + electrophoresis (A) (B) RNA sequencing + PCR 64. (C) Protein electrophoresis + antibody detection (D) Chain termination sequencing 59. In pyrosequencing, ATP sulfurylase converts PPi into:
- **ATP** (B) (C) **AMP GMP** (D) The main goal of functional genomics is to: Sequence the genome (A) (B) Study the functions of genes and their products (C) Map chromosomes (D) Study DNA replication Quantitative real-time PCR (qPCR) measures: (A) Protein expression levels (B) DNA sequence polymorphisms (C) Gene expression levels in real time (D) DNA.protein interactions Which dye is commonly used in qPCR for detection? (A) Coomassie Blue SYBR Green (B) (C) Ethidium bromide (D) Silver stain DNA microarrays are primarily used to: Detect DNA methylation only (A) (B) Study protein folding (C) Measure expression of thousands of genes simultaneously (D) Sequence entire genomes Which technique relies on hybridization of nucleic acids on a solid surface? qPCR (A) (B) Microarray

CRISPR

RNAi

(C)

(D)

(A)

Light directly

65. RNA interference (RNAi) functions by: (C) Oligonucleotide-directed Enhancing transcription (A) mutagenesis (B) Blocking mRNA translation or (D) EMS chemical mutagenesis degrading mRNA 70. Which of the following is a genome editing (C) Increasing DNA replication tool based on engineered DNAbinding Stimulating protein folding (D) domains? 66. Which enzyme complex mediates RNA **RNAi** (A) interference? (B) **TALENs** DNA polymerase (A) Microarrays (C) Dicer and RISC (B) qPCR (D) (C) RNA polymerase II 71. Which of the following is an application of (D) Cas9 metagenomics? 67. siRNA and shRNA are tools for: Studying gene expression in single (A) cells (A) Gene amplification (B) Analyzing microbial communities (B) Gene silencing without culturing (C) Gene editing (C) Sequencing individual human (D) Genome sequencing genes only 68. Mutagenesis is used in functional genomics Editing genomes (D) 72. Metagenomics mainly relies on sequencing to: of: (A) Study protein folding (A) Ribosomal RNA genes (e.g., 16S Introduce mutations to study gene (B) rRNA) function (B) Histone proteins Transfer RNA (C) (C) Sequence DNA **Antibodies** (D) (D) Detect polymorphisms 73. Which method allows gene knockdown 69. Which of the following is a site-directed without altering DNA? mutagenesis method? CRISPR-Cas9 (A) (A) Random UV exposure (B) **TALENs**

(B)

Error-prone PCR

(C)

(D)

RNA interference

Site-directed mutagenesis

74. Which of the following is NOT a genome 79. Yeast Two-Hybrid (Y2H) system is based editing technique? on the reconstitution of: **CRISPR** (A) Transcriptional activator (A) (B) RNA polymerase activity (B) **TALENs** (C) DNA helicase activity **ZFNs** (C) (D) **qPCR** (D) Protein phosphorylation 80. In Y2H assay, the "bait" protein is fused to: 75. Functional genomics integrates: DNA-binding domain (A) Sequencing and protein modelling (A) (B) Activation domain (B) Transcriptomics, proteomics, and (C) GFP-tag metabolomics (D) Histidine tag (C) Only DNA replication studies 81. FRET (Forster Resonance Energy Transfer) (D) Only mutagenesis studies is based on: 76. TagMan probes in gPCR are: (A) Light absorption by heme group (A) Non-specific dyes (B) Energy transfer between two fluorescent molecules (B) Fluorescent probes that increase (C) Electron transfer between proteins specificity Protein phosphorylation (D) (C) RNA interference molecules 82. In FRET, which condition must be fulfilled (D) Cas9 guide RNAs for energy transfer? Pulldown assay is mainly used for: 77. (A) Donor and acceptor proteins should (A) Detection of DNA-protein be at least 10 nm apart interactions Donor and acceptor proteins must (B) (B) Detection of protein-protein be within 1.10 nm distance interactions in vitro (C) Donor must be radioactive (D) Acceptor must be attached to (C) Determining transcription start site agarose beads (D) Protein folding studies 83. FRET is most useful for studying: 78. In a pulldown assay, the "bait protein" is In vitro protein folding (A) usually attached to: (B) Real-time protein-protein (A) Agarose beads or resin interactions in living cells (B) DNA fragment Protein sequencing (C) (C) RNA probe **DNA** methylation (D)

(12)

(D)

B041001T-A/84

Fluorescent dye

84.		of the following is NOT a commonl	у	(B)	PCR		
	used	reporter gene in Y2H?		(C)	DNA sequencing		
	(A)	HIS3		(D)	Northern blot		
	(B) (C)	lacZ GFP	89.		In Northern blot analysis, the separation of RNA molecules is done by:		
85.	(D)	actin GAL4 system used in Y2H comes from	n	(A)	Agarose gel electrophoresis under denaturing conditions		
00.		organism?		(B)	Polyacrylamide gel electrophoresis		
	(A)	E. coli		()	of proteins		
	(B)	Saccharomyces cerevisiae		(C)	Chromatography on cellulose		
	(C)	Drosophila melanogaster		(D)	Western blotting		
	(D)	Arabidopsis thaliana	90.	Which	of the following techniques involves		
	FRET	FRET efficiency depends strongly on:		•	dization of labeled probe to RNA in		
	(A)	Protein phosphorylation rate	of		on, protected from nuclease digestion?		
	(B)	Distance and orientation of		(A)	Northern blotting		
		fluorophores		(B)	Nuclease protection assay		
	(C)	Size of proteins involved		(C)	Nuclear run-off transcription assay		
	(D)	Presence of antibodies		(D)	5' RACE		
87.		n fluorophore pair is commonly use ET experiments?	d 91.		The nuclease protection assay is more sensitive than Northern blotting because:		
	(A)	GFP.RFP		(A)	It detects proteins directly		
	(B)	His.GST			Hybridized RNA fragments are protected from enzymatic degradation		
	(C)	DNA.RNA		(B)			
	(D)	Biotin.Streptavidin					
88.		n downstream method is typically use	d	(C)	It uses antibodies		
		ect proteins after pulldown assay?		(D)	RNA is amplified before detection		
	(A)	(A) SDS-PAGE + Western blot					
B041	001T-A	./84	(13)		[P.T.O.]		

- 92. Which RNA analysis technique measures active transcription rates rather than mRNA stability?
 - (A) Northern blot
 - (B) Nuclease protection assay
 - (C) Nuclear run-off assay
 - (D) 5 Œ RACE
- 93. 5 Œ RACE (Rapid Amplification of cDNA Ends) is used to:
 - (A) Determine the transcription start site of mRNA
 - (B) Measure the half-life of mRNA
 - (C) Quantify mRNA levels
 - (D) Detect ribosomal RNA contamination
- 94. In 5 Œ RACE, the initial step involves:
 - (A) Digestion of RNA with RNase H
 - (B) Reverse transcription of RNA into cDNA
 - (C) Translation of RNA into protein
 - (D) Southern blotting
- 95. Which of the following is a non-PCR method to study RNA expression?
 - (A) 5 Œ RACE
 - (B) Northern blot
 - (C) RT-qPCR
 - (D) RNA-seq
- 96. In nuclease protection assay, the enzyme most commonly used to digest unhybridized RNA is:
 - (A) RNase A
 - (B) DNase I
 - (C) Proteinase K
 - (D) Restriction endonuclease

- 97. The nuclear run-off assay requires:
 - (A) Isolated intact nuclei
 - (B) RNA polymerase purified from bacteria
 - (C) Intact polysomes
 - (D) Complementary DNA probes attached to agarose beads
- 98. A researcher wants to measure both the amount and the approximate size of an mRNA. Which method is most appropriate?
 - (A) Nuclear run-off assay
 - (B) Nuclease protection assay
 - (C) Northern blot
 - (D) 5' RACE
- 99. Which of the following techniques uses labeled RNA probes rather than labeled DNA probes?
 - (A) Northern blot
 - (B) Southern blot
 - (C) Nuclease protection assay
 - (D) Nuclear run-off assay
- 100. Which of the following steps is not involved in Northern blotting?
 - (A) RNA extraction
 - (B) Gel electrophoresis of RNA
 - (C) Transfer to membrane
 - (D) Enzymatic amplification of RNA

Rough Work

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।