Roll. No	Question Booklet Number	
O.M.R. Serial No.		

M.A./M.Sc. (SEM.-V) (NEP) (SUPPLE.) EXAMINATION, 2024-25

MATHEMATICS

(Advanced Differential Equation)

Paper Code							
В	0	3	0	9	0	5	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

- 1. The differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0 \text{ has the auxiliary}$ equation:
 - (A) $m^2 + 3m + 2 = 0$
 - (B) $m^2 3m + 2 = 0$
 - (C) $m^2 2m + 3 = 0$
 - (D) $m^2 + 2m 3 = 0$
- 2. The equation $x^2y'' + xy' y = 0$ is:
 - (A) Cauchy–Euler equation
 - (B) Exact equation
 - (C) Bernoulli equation
 - (D) Riccati equation
- 3. A second-order linear homogeneous equation always has:
 - (A) Exactly one solution
 - (B) Two linearly independent solutions
 - (C) Infinitely many unrelated solutions
 - (D) No general solution
- 4. The equation y'' + p(x)y' + q(x)y = 0 is linear with:
 - (A) Constant coefficients only
 - (B) Variable coefficients only
 - (C) Either constant or variable coefficients
 - (D) No coefficients

B030905T-A/60

- 5. Two solutions y_1, y_2 of a linear ODE are linearly dependent if:
 - (A) $y_1 + y_2 = 0$
 - (B) One is a constant multiple of the other
 - (C) Both are nonzero everywhere
 - (D) Their Wronskian is nonzero
- 6. The Wronskian of $y_1 = e^x$, $y_2 = e^{-x}$ is:
 - (A) 0
 - (B) 1
 - (C) -2
 - (D) $-2e^0$
- 7. If the Wronskian of two functions is identically zero, then the functions are:
 - (A) Always linearly independent
 - (B) Always linearly dependent
 - (C) Sometimes dependent, sometimes independent
 - (D) Orthogonal
 - For $y_1 = x, y_2 = x^2$, the Wronskian is:
 - $(A) \quad 0$

8.

- (B) χ^2
- (C) χ^3
- (D) x

- 9. The Wronskian is defined as:
 - (A) A determinant involving solutions and their derivatives
 - (B) Sum of solutions
 - (C) Product of solutions
 - (D) Ratio of solutions
- 10. For $y'' + y = \sin(x)$, the particular solution form is:
 - (A) $A\sin(x) + B\cos(x)$
 - (B) $Ax\sin(x) + Bx\cos(x)$
 - (C) Ae^{x}
 - (D) Ax^2
- 11. The method of undetermined coefficients is applicable when the RHS is:
 - (A) Arbitrary function
 - (B) Polynomial, exponential, sine, cosine (or combinations)
 - (C) Any discontinuous function
 - (D) A delta function
- 12. If the RHS term is already a solution of the homogeneous equation, the trial solution should be:
 - (A) Same form
 - (B) Multiplied by x
 - (C) Multiplied by χ^2
 - (D) Excluded completely

- 13. Reduction of order is used to:
 - (A) Solve nonlinear equations
 - (B) Find a second solution when one solution is known
 - (C) Reduce order of coefficients
 - (D) Find integrating factor
- 14. If $y_1 = x$ is a known solution of a second-order ODE, the second solution is sought as:
 - $(A) y_2 = vy_1$
 - (B) $y_2 = y_1 + v$
 - (C) $y_2 = y_1^2$
 - $(D) y_2 = \ln(y_1)$
- 15. In reduction of order, substitution $y = v(x)y_1(x)$ reduces the equation to:
 - (A) First-order in y
 - (B) First-order in v
 - (C) Second-order in v
 - (D) Third-order in v
- 16. Reduction of order is generally applied to:
 - (A) First-order equations
 - (B) Second-order linear homogeneous equations
 - (C) Third-order equations only
 - (D) Partial differential equations

- 17. If $y_1 = e^x$ is a solution of y'' y' = 0, the second solution using reduction of order is:
 - (A) $y_2 = e^{-x}$
 - (B) $y_2 = xe^x$
 - $(C) y_2 = e^x \ln(x)$
 - (D) $y_2 = x^2 e^x$
- 18. An initial value problem specifies:
 - (A) Only the differential equation
 - (B) The differential equation + boundary conditions at two points
 - (C) The differential equation + values of the solution at a single point
 - (D) Only coefficients of the equation
- 19. The IVP y' = y, y(0) = 1 has solution:
 - (A) $y = e^x$
 - (B) $y = e^{-x}$
 - (C) y = x
 - (D) y=1
- 20. The IVP y'' + y = 0, y(0) = 0, y'(0) = 1 has solution:
 - (A) $\sin(x)$
 - (B) $\cos(x)$
 - (C) e^x
 - (D) $\sinh(x)$

- 21. Existence and uniqueness theorem guarantees solution if:
 - (A) Coefficients are continuous
 - (B) RHS is continuous and Lipschitz in y
 - (C) Initial condition is zero
 - (D) Equation is homogeneous
- 22. The IVP y' = 2x, y(0) = 3 gives:
 - $(A) y = x^2 + 3$
 - (B) $y = x^2 3$
 - (C) $y = 2x^2 + 3$
 - (D) y = 2x + 3
- 23. The equivalent integral equation ensures:
 - (A) Approximate solutions only
 - (B) Exact equivalence to IVP
 - (C) Only uniqueness, not existence
 - (D) Only existence, not uniqueness
- 24. Which method often uses equivalent integral equations for proofs?
 - (A) Laplace transforms
 - (B) Picard iteration
 - (C) Frobenius method
 - (D) Fourier transforms

25. If $y(x) = y_0 + \int_{x_0}^x f(t, y, (t)) dt$

differentiating gives:

- (A) y' = 0
- (B) y' = f(x, y)
- (C) $y' = y_0$
- (D) $v' = v^2$
- 26. Picard's method is used for:
 - (A) Exact algebraic solution of ODEs
 - (B) Approximate successive solutions of IVPs
 - (C) Solving PDEs directly
 - (D) Reducing order of equations
- 27. The second Picard approximation for the same problem is:
 - (A) $1+x+\frac{x^2}{2}$
 - (B) $1 + \frac{x^2}{2}$
 - (C) 1 + 2x
 - (D) $1+x^2$
- 28. Picard's iteration is based on the equivalent:
 - (A) Algebraic equation
 - (B) Integral equation
 - (C) Difference equation
 - (D) Polynomial approximation

- 29. Convergence of Picard iteration depends on:
 - (A) Continuity of f(x, y) only
 - (B) Lipschitz condition in y
 - (C) Differentiability of f
 - (D) Existence of Green's function
- 30. The constant L in the Lipschitz condition is called:
 - (A) Integral constant
 - (B) Lipschitz constant
 - (C) Picard constant
 - (D) Bound constant
- 31. If $f(x,y) = y^2$, then f is:
 - (A) Globally Lipschitz in y
 - (B) Locally Lipschitz in y
 - (C) Not Lipschitz at all
 - (D) Lipschitz only for negative y
- 32. The Existence theorem requires:
 - (A) f(x,y) continuous in a region around (x_0,y_0)
 - (B) f bounded only
 - (C) f differentiable everywhere
 - (D) f linear in y

2.2	COL TI.	.1	•
33.	The Unio	illeness th	eorem requires:
55.	The Chie	uciicss air	coremite quites.

- (A) Continuity of f only
- (B) Lipschitz condition in y
- (C) Monotonicity of f
- (D) Boundedness of f

- (A) Cauchy's theorem
- (B) Picard–Lindelöf theorem
- (C) Taylor's theorem
- (D) Sturm–Liouville theorem

35. Functions
$$\{\sin(nx)\}, n = 1, 2...$$
 are orthogonal on:

- (A) $(0,\infty]$
- (B) $[0,2\pi]$
- (C) [0,1]
- (D) $\left[-\infty,\infty\right]$

- (A) Differentiation
- (B) Integration with a weight function
- (C) Summation
- (D) Limit process

37. The set
$$\{1,x,x^2\}$$
 is orthogonal on $[-1,1]$:

- (A) Always
- (B) With respect to weight function w(x)=1
- (C) No, it is not orthogonal
- (D) Only for odd powers

- (A) At one point only
- (B) At two or more points
- (C) At infinity only
- (D) Without any conditions

39. The problem
$$y'' + y = 0, y(\pi) = 0,$$

 $y(0=0)$ is a:

- (A) Boundary value problem
- (B) Initial value problem
- (C) Sturm–Liouville problem
- (D) Integral equation

- (A) Geometry
- (B) Fourier series expansions
- (C) Physics (heat, wave equations)
- (D) All of the above

(A)
$$(p(x)y')' + q(x)y + \lambda w(x)y = 0$$

(B)
$$y' + p(x)y = q(x)$$

(C)
$$y'' + y = 0$$

$$(D) \qquad y'' + p(x) = 0$$

- (A) A linearly dependent set
- (B) An orthogonal set
- (C) A redundant set
- (D) A divergent set

- 43. The eigenvalues of a Sturm–Liouville problem are usually:
 - (A) Complex
 - (B) Real
 - (C) Arbitrary
 - (D) Zero only
- 44. Green's function is used to solve:
 - (A) Nonlinear IVPs
 - (B) Linear inhomogeneous BVPs
 - (C) Picard iterations
 - (D) Existence theorems
- 45. The Green's function represents:
 - (A) A kernel for an integral operator
 - (B) A Fourier transform
 - (C) A Laplace transform
 - (D) A polynomial basis
- 46. If Ly = f(x), then the solution using Green's function is:
 - (A) $y(x) = \int G(x,t)f(t)dt$
 - (B) y(x) = f(t)dt
 - (C) y(x) = G(x)
 - (D) y(x) = f(x)

- 47. The Ascoli–Arzelà theorem provides conditions for:
 - (A) Orthogonality of functions
 - (B) Compactness in C [a, b]
 - (C) Lipschitz continuity
 - (D) Picard iteration convergence
- 48. The theorem states that a family of functions is relatively compact if:
 - (A) It is bounded and Equi continuous
 - (B) It is orthogonal
 - (C) It is differentiable
 - (D) It satisfies Lipschitz condition
- 49. A first-order system of linear differential equations can be written as:
 - (A) Y' = AY + f(x)
 - (B) Y'' = AY
 - (C) AY' = Y
 - (D) Y' = f(Y)
- 50. For the homogeneous system Y' = AY, the solution is:
 - $(A) Y = e^{At}Y(0)$
 - (B) Y = AY
 - (C) Y = Y(0)
 - (D) $Y = \int AY dx$

51.		m corresponds to: Any two solutions Linearly independent solutions spanning the solution space Arbitrary constant functions Orthogonal polynomials only	55.		e Wronskian of solutions is ero at some point, then: Solutions are dependent Solutions are independent Solutions vanish None of the above
52.		dimension of the solution space th order linear homogeneous m is: n n² 2n Infinite	56.	The t (A) (B) (C) (D)	race of a matrix is: Sum of diagonal elements Product of diagonal elements Determinant Rank
53.	A fur (A) (B) (C) (D)	Any square matrix of solutions A matrix whose columns form a fundamental set of solutions Determinant of solutions Inverse of A	57.	The pusing (A) (B) (C) (D)	variation of parameters Method of undetermined coefficients Both (A) and (B) None of the above
54.	The V syste (A) (B) (C) (D)	Wronskian of solutions of a linear m is: The sum of solutions The determinant of the fundamental matrix Always zero Ratio of solutions	58.		nas distinct real eigenvalues, the amental solutions are: Polynomials Exponentials involving eigenvalues Sinusoids Arbitrary constants

- 59. For repeated eigenvalues, fundamental solutions include:
 - (A) Only exponentials
 - (B) Exponentials and polynomial multiples
 - (C) Only polynomials
 - (D) None of the above
- 60. Complex eigenvalues yield solutions involving:
 - (A) Pure exponentials
 - (B) Sine and cosine functions
 - (C) Polynomials
 - (D) Only real constants
- 61. A self-adjoint second-order equation has form:
 - (A) (p(x)y')' + q(x)y = 0
 - (B) y'' + y = 0
 - (C) y' + py = 0
 - (D) None of the above
- 62. Sturm theory deals with:
 - (A) Orthogonality of eigenfunctions
 - (B) Convergence of Picard iteration
 - (C) Existence and uniqueness
 - (D) Nonlinear chaos
- 63. The Abel formula gives relation between:
 - (A) Solutions and their Wronskian
 - (B) Eigenvalues and eigenfunctions
 - (C) Green's function
 - (D) Phase-plane paths

- 64. Sturm separation theorem states:
 - (A) Zeros of two solutions interlace
 - (B) All solutions are orthogonal
 - (C) All solutions vanish
 - (D) Solutions coincide
- 65. Sturm comparison theorem gives:
 - (A) Relation between zeros of solutions of two equations
 - (B) Relation between Wronskians
 - (C) Orthogonality criterion
 - (D) Eigenvalue formula
- 66. Fundamental matrix at t = 0 is usually chosen as:
 - (A) Identity matrix
 - (B) Zero matrix
 - (C) Determinant of A
 - (D) Eigenvector matrix
- 67. Linearly dependent solutions give a fundamental matrix with determinant:
 - (A) Nonzero
 - (B) Zero
 - (C) One
 - (D) Infinite
- 68. The Wronskian is zero everywhere if:
 - (A) Solutions are independent
 - (B) Solutions are dependent
 - (C) Matrix is diagonal
 - (D) Trace is zero

69.		homogeneous systems can also lved using: Laplace transforms Fourier transforms Both (A) and (B) None of the above	73.	(A) (B) (C) (D)	No explicit dependence on t No dependence on y Constant coefficients only Random forcing
70.	(A)	n-linear system has the form: Y' = AY Y' = f(Y) (non-linear f) y'' + py = 0 None of the above	74.	Critic where (A) (B) (C) (D)	eal points are defined as points e: f(x,y) = 0 $dy / dt = 0, dx / dt = 0$ Both (A) and (B) None of the above
71.	The p (A) (B) (C) (D)	Shase plane represents: Graph of solution in (t,y) Graph of solution in (y,y') Graph of solution in (x,y) Graph of eigenvalues	75.	An is (A) (B) (C) (D)	olated critical point means: Only one solution passes through it No other critical point nearby Always unstable None of the above
72.	A pat (A) (B) (C)	Th in phase plane corresponds to: Integral curve of system Straight line only Eigenvector	76.	Linea (A) (B) (C)	arization near critical point uses: Jacobian matrix Wronskian Sturm comparison

(D)

Determinant curve

(D) Green's function

77.	The t	ype of critical point depends on:	81.	If eig	envalues are complex with real	
	(A) Trace and determinant of			part nonzero:		
		Jacobian		(A)	Spiral (focus)	
	(B)	Rank of Jacobian		(B)	Node	
	(C)	Only determinant		(C)	Saddle	
	(D)	Eigenfunction set		(D)	Center	
78.	If eig	envalues are real and distinct of	82.	Stabi	lity of a critical point requires:	
	same	sign, critical point is:		(A)	Negative real parts of	
	(A)	Node			eigenvalues	
	(B)	Saddle		(B)	Positive real parts	
	(C)	Spiral		(C)	Purely imaginary eigenvalues	
	(D)	Center		(D)	None of the above	
79.	If eig	genvalues are real, of opposite	83.	Asym	nptotically stable point means:	
	sign:			(A)	Paths diverge	
	(A)	Saddle		` ′	-	
	(B)	Node		(B)	Paths approach and remain	
	(C)	Spiral		(C)	Paths oscillate only	
	(D)	Center		(D)	Paths are periodic	
80.	If eigenvalues are purely imaginary:		84.	Unstable point corresponds to eigenvalues with:		
	(A)	Spiral		(A)	Positive real part	
	(B)	Center		, ,	-	
	(C)	Saddle		(B) (C)	Negative real part Zero	
	(D)	Node		(D)	Pure imaginary	
	(D)	Tiode		(D)	1 or o magmary	
B0309	905T-A	/60 (1:	2)			

85.	Sadd	le point stability:	89.	Dege	enerate node occurs when:
	(A)	Neutral		(A)	Eigenvalues equal, only one eigenvector
	(B)	Always stable		(B)	Eigenvalues distinct
	(C)	Always unstable		(C)	Eigenvalues imaginary
	(D)	Oscillatory		(D)	Determinant = 0
86.	Spira	al point trajectories:	90.	If Re	$e(\lambda) < 0$, path:
	(A)	Spiral toward or away from critical point	n	(A)	Approaches critical point
	(B)	Straight lines		(B)	Diverges
	(C)	Closed circles		(C)	Oscillates
	(D)	None of the above		(D)	Periodic
87.	Cente	er point trajectories:	91.	If Re	$e(\lambda) > 0$, path:
	(A)	Closed orbits		(A)	Approaches
	(B)	Spiral inward		(B)	Diverges from critical point
	(C)	Spiral outward		(C)	Remains closed
	(D)	Diverge to infinity		(D)	None of the above
88.	Node	point is stable if eigenvalues are	e: 92.	If eig	envalues purely imaginary, path:
	(A)	Positive		(A)	Remains closed (canter)
	(B)	Negative		(B)	Diverges
	(C)	Imaginary		(C)	Approaches
	(D)	Zero		(D)	Unstable spiral
B030	905T-A	/60	(13)		[P.T.O.]

93.	Stabl (A)	e spiral has eigenvalues: Complex with negative real part	97.		solutions remain bounded but not ergent, the equilibrium is: Unstable	
	(B)	Complex with positive real part		(B)	Asymptotically stable	
	(C)	Pure imaginary		(C)	Stable (Lyapunov stable)	
	(D)	Real equal values		(D)	None of the above	
94.	Unsta	able spiral has eigenvalues:	98.	If sol	utions converge to equilibrium,	
	(A)	Complex with positive real part		it is:		
	(B)	Complex with negative real		(A)	Unstable	
		part		(B)	Asymptotically stable	
	(C)	Pure imaginary		(C)	Neutrally stable	
	(D)	Real		(D)	None of the above	
95.	Linea	Linearization theorem states:		If so	lutions diverge for arbitrarily	
	(A) Non-linear system near critical			small	small perturbations:	
		point behaves like linearized system		(A)	Unstable equilibrium	
	(B)	System is always unstable		(B)	Stable	
	(C)	Only linear systems are stable		(C)	Neutral	
	(D)	None of the above		(D)	Periodic	
96.	Lyapunov's method is used to study:		100.	For d	iagonalizable A , solution is:	
	(A)	Sturm comparison		(A)	$y = Pe^{dt} p^{-1} y(0)$	

(B)

(C)

Orthogonality

Wronskian behaviour

Stability of nonlinear systems

(B) $y = a^{-1}y(0)$

(C)

(D)

y = Dt

None of the above

Rough Work

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।