Roll. No								Question Booklet Number	
O.M.R. Serial No.									

M.A./M.Sc. (SEM.-III) (NEP) (SUPPLE.) EXAMINATION, 2024-25

MATHEMATICS

(Fluid Dynamics)

Paper Code							
B	0	3	0	9	0	3	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee:

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

- 1. Which of the following is a Newtonian fluid?
 - (A) Blood
 - (B) Air
 - (C) Toothpaste
 - (D) Soap solution
- 2. The relation between shear stress and velocity gradient is linear in:
 - (A) Newtonian fluids
 - (B) Non-Newtonian fluids
 - (C) Bingham plastics
 - (D) All fluids
- 3. Which of the following behaves as a non-Newtonian fluid?
 - (A) Water
 - (B) Air
 - (C) Molasses
 - (D) Mercury
- 4. Continuum hypothesis assumes:
 - (A) Fluids are made up of discrete molecules
 - (B) Fluid properties vary continuously without molecular discreteness
 - (C) Fluids cannot be compressed
 - (D) Fluids have no viscosity
- 5. Continuum hypothesis is valid if:
 - (A) Knudsen number << 1
 - (B) Knudsen number ≈ 1
 - (C) Knudsen number >> 1
 - (D) None of these

- 6. Which field depends on continuum hypothesis?
 - (A) Classical fluid mechanics
 - (B) Quantum mechanics
 - (C) Molecular dynamics
 - (D) Nuclear physics
- 7. In Lagrangian description, fluid motion is described by:
 - (A) Tracing each fluid particle
 - (B) Considering a fixed point in space
 - (C) Average velocity at control volume
 - (D) Pressure field only
- 8. Eulerian method describes fluid motion with respect to:
 - (A) Moving particles
 - (B) Control volume (fixed in space)
 - (C) Individual molecule
 - (D) Random path lines
- 9. Which approach is easier for solving Navier-Stokes equations?
 - (A) Lagrangian
 - (B) Eulerian
 - (C) Both are same
 - (D) Neither

- 10. The continuity equation represents:
 - (A) Conservation of energy
 - (B) Conservation of momentum
 - (C) Conservation of mass
 - (D) Conservation of entropy
- 11. Continuity equation in Cartesian coordinates is:
 - (A) $\partial u / \partial x + \partial v / \partial y + \partial w / \partial z = 0$
 - (B) u dv / dx + v du / dv = 0
 - (C) $\partial p / \partial x + \partial p / \partial y = 0$
 - (D) $\nabla^2 \varphi = 0$
- 12. In cylindrical polar coordinates, continuity equation is:
 - (A) $(1/r)\partial(ru)/\partial r + \partial v/\partial\theta + \partial w/\partial z = 0$
 - (B) $(1/r) \partial u / \partial r + \partial v / \partial \theta = 0$
 - (C) $\partial u / \partial \theta + \partial w / \partial z = 0$
 - (D) None of these
- 13. Continuity equation in spherical polar coordinates includes:
 - (A) $(1/r^2) \partial (r^2 u) / \partial r \text{ term}$
 - (B) $(1/r) \partial v / \partial \theta \text{ term}$
 - (C) $(1/r \sin \theta) \partial w / \partial \phi term$
 - (D) All of these
- 14. Vorticity vector is defined as:
 - (A) Curl of velocity vector
 - (B) Divergence of velocity vector
 - (C) Gradient of velocity potential
 - (D) Laplacian of velocity vector

- 15. Vorticity is zero in:
 - (A) Rotational flow
 - (B) Irrotational flow
 - (C) Turbulent flow
 - (D) Viscous flow
- 16. Velocity potential function satisfies:
 - (A) Laplace equation
 - (B) Poisson equation
 - (C) Bernoulli equation
 - (D) None of these
- 17. Streamline represents:
 - (A) Path traced by a particle
 - (B) Instantaneous direction of velocity field
 - (C) Locus of all particles passed through a point
 - (D) None of these
- 18. Pathline represents:
 - (A) Path traced by a fluid particle over time
 - (B) Direction of velocity vector
 - (C) Pressure distribution
 - (D) Mass flux
- 19. Streakline is the locus of particles that:
 - (A) Pass through a given point continuously
 - (B) Trace a velocity vector
 - (C) Travel in streamline direction
 - (D) Remain stationary

- 20. A flow is rotational when:
 - (A) Vorticity $\neq 0$
 - (B) Vorticity = 0
 - (C) Velocity potential exists
 - (D) Laplace equation holds
- 21. In irrotational flow:
 - (A) Circulation = 0
 - (B) Vorticity = 0
 - (C) Velocity potential exists
 - (D) All of these
- 22. Condition of irrotational flow is:
 - (A) $\nabla \times V = 0$
 - (B) $\nabla \cdot V = 0$
 - (C) $\nabla V = 0$
 - (D) $\nabla^2 V = 0$
- 23. Boundary surface is the surface that:
 - (A) Separates two immiscible fluids
 - (B) Separates streamline and pathline
 - (C) Has no velocity
 - (D) Has infinite vorticity
- 24. On solid boundaries, the boundary condition is:
 - (A) Velocity normal = 0 (no penetration)
 - (B) Velocity tangential = 0 (no slip)
 - (C) Both (A) and (B)
 - (D) Only pressure is continuous

- 25. Across fluid-fluid interface, which condition holds?
 - (A) Pressure continuity
 - (B) Velocity tangential continuity
 - (C) Velocity normal continuity
 - (D) All of these
- 26. Kinematic boundary condition refers to:
 - (A) Continuity of normal velocity across boundary
 - (B) Continuity of tangential velocity across boundary
 - (C) Stress distribution at boundary
 - (D) None of these
- 27. Dynamic boundary condition refers to:
 - (A) Continuity of pressure and stresses
 - (B) Continuity of velocity
 - (C) No slip
 - (D) Only tangential stresses
- 28. Which function can simultaneously define both streamlines and equipotential lines?
 - (A) Stream function
 - (B) Velocity potential
 - (C) Complex potential
 - (D) Vorticity function

- 29. Stream function in 2D satisfies:
 - (A) Continuity equation automatically
 - (B) Euler's equation
 - (C) Laplace's equation always
 - (D) Bernoulli's theorem
- 30. Euler's equation of motion is derived from:
 - (A) Conservation of mass
 - (B) Conservation of momentum
 - (C) Conservation of energy
 - (D) Conservation of entropy
- 31. Euler's equation of motion is valid for:
 - (A) Viscous and compressible flow
 - (B) Inviscid and incompressible flow
 - (C) Only laminar flow
 - (D) Only turbulent flow
- 32. Euler's equation in vector form is:
 - (A) $\rho (dV/dt) = -\nabla \rho + \rho g$
 - (B) $\nabla \cdot V = 0$
 - (C) $\nabla \times V = 0$
 - (D) $dp / dx = \rho g$
- 33. Bernoulli's equation is obtained by integrating:
 - (A) Navier-Stokes equation
 - (B) Continuity equation
 - (C) Euler's equation of motion
 - (D) Energy equation

- 34. Bernoulli's equation represents:
 - (A) Conservation of momentum
 - (B) Conservation of energy
 - (C) Continuity of mass
 - (D) Vorticity equation
- 35. In Bernoulli's equation, the term $\rho/\rho g$ is called:
 - (A) Pressure head
 - (B) Velocity head
 - (C) Elevation head
 - (D) Dynamic head
- 36. Bernoulli's equation is applicable to:
 - (A) Viscous, unsteady, compressible flow
 - (B) Inviscid, incompressible, steady flow along streamline
 - (C) Only rotational flows
 - (D) Turbulent flow
- 37. Which of the following is an application of Bernoulli's principle?
 - (A) Venturimeter
 - (B) Pitot tube
 - (C) Orifice meter
 - (D) All of these
- 38. Lagrange's equation of motion is a reformulation of:
 - (A) Newton's second law
 - (B) Continuity equation
 - (C) Navier-Stokes equation
 - (D) Bernoulli's equation

39. In Lagrangian formulation, the 43. In the absence of viscous dissipation equation of motion is expressed in and heat transfer, the energy equation terms of: reduces to: (A) Continuity equation (A) Generalized coordinates Bernoulli's equation (B) Stream function (B) Euler's equation (C) (C) Velocity potential Navier-Stokes equation (D) (D) Pressure function 44. An impulsive force acts for: 40. The principle used to derive Lagrange's (A) A very long duration equation is: An infinitely short time (B) (A) Principle of least action Only in rotational motion (C) Only in steady flow (D) (B) D'Alembert's principle 45. Impulsive effects are studied using: (C) Continuum hypothesis (A) Momentum equation (D) Bernoulli's theorem (B) Impulse-momentum equation The energy equation is obtained by 41. (C) Energy equation applying: (D) Continuity equation (A) First law of thermodynamics 46. In impulsive motion, change in momentum is equal to: (B) Second law of thermodynamics Force × distance (A) (C) Newton's law (B) Force × velocity (D) Continuity equation (C) **Impulse** 42. Energy equation for fluid motion Energy transfer (D) includes: 47. Helmholtz's first theorem states: Internal energy (A) (A) Circulation around a material curve remains constant (B) Kinetic energy (B) Vorticity is always zero

(C)

(D)

Stream function is constant

Energy is conserved

(C)

(D)

Potential energy

All of these

48.		nholtz's vorticity theorem is cable for:	53.	The device used to mean of fluid using Bernoulli's		
	(A)	Viscous flow		(A)	Manometer	
	(B)	Inviscid flow		. ,	Pitot tube	
	(C)	Compressible flow only		(B)	Pitot tube	
	(D)	Turbulent flow		(C)	Bourdon gauge	
49.	Acco	rding to Helmholtz, vortex lines:	54.	(D)	Rotameter	
	(A)	Cannot begin or end in fluid		For two-dimensional inc		
	(B)	Always end on solid boundaries		flow, the condition of in		
	(C)	Disappear suddenly		is:		
	(D)	Can terminate in space		(A)	$\partial u / \partial x + \partial v / \partial y = 0$	
50.	In an	ideal fluid, vortex filaments		(B)	$\partial v / \partial x - \partial u / \partial y =$	
	(A)	With the fluid		(C)	$\partial u / \partial x = \partial v / \partial y$	
	(B)	Against the fluid		(D)	$\partial u / \partial y = \partial v / \partial x$	
	(C)	Stationary	55.	In 21	D irrotational flow,	
51.	(D)	Randomly		potential φ satisfies:		
	Vorti	city is mathematically defined as:		•		
	(A)	$\nabla \times V$		(A)	Poisson equation	
	(B)	$\nabla ullet V$		(B)	Laplace equation	
	(C)	∇V		(C)	Continuity equation	
	(D)	$ abla^2 V$		(D)	Navier–Stokes eq	
52.	Vortio	city equation is obtained by taking	5 6	. ,		

- (B) Euler's equation of motion
- (C) Energy equation

the curl of:

Lagrange's equation (D)

sure velocity s principle is:

- compressible rrotationality
 - 0
 - 0
- the velocity
 - on only
 - uation
- Irrotational flow implies: 56.
 - (A) Circulation is zero
 - Vorticity = 0(B)
 - Potential function exists (C)
 - (D) All of these

- 57. The stream function ψ is defined such that:
 - (A) $u = \partial \psi / \partial y, v = -\partial \psi / \partial x$
 - (B) $u = \partial \psi / \partial x, v = \partial \psi / \partial v$
 - (C) $u = \partial \psi / \partial z, v = \partial \psi / \partial x$
 - (D) None of these
- 58. Streamlines are lines of:
 - (A) Constant potential function
 - (B) Constant stream function
 - (C) Zero velocity
 - (D) Maximum vorticity
- 59. For incompressible flow, stream function ψ satisfies:
 - (A) Poisson's equation
 - (B) Laplace's equation
 - (C) Euler's equation
 - (D) None of these
- 60. Physical significance of stream function is:
 - (A) Difference of ψ gives flow rate between streamlines
 - (B) ψ = velocity potential
 - (C) $\psi = \text{circulation always}$
 - (D) ψ is dimensionless
- 61. In 2D, velocity potential of a source at origin is:
 - (A) $(Q/2\pi) \log r$
 - (B) $(Q/2\pi r)$
 - (C) $(Q/4\pi r^2)$
 - (D) (Q/r)

- 62. Stream function for a 2D source at origin is:
 - (A) $(Q/2\pi)\theta$
 - (B) $(Q/2\pi) r$
 - (C) $(Q/2\pi r)\cos\theta$
 - (D) None of these
- 63. A doublet is formed by:
 - (A) Source and sink of equal strength placed very close
 - (B) Two sinks of equal strength
 - (C) Two sources at same point
 - (D) Source at infinity
- 64. Velocity potential of a doublet at origin is:
 - (A) $-(\mu \cos \theta)/(2\pi r)$
 - (B) $(\mu \sin \theta)/(2\pi r^2)$
 - (C) μ/r^2
 - (D) $\mu \log r$
- 65. The complex potential is written as:
 - (A) $W = \varphi i\psi$
 - (B) $W = \varphi + i\psi$
 - (C) $W = \psi i\varphi$
 - (D) $W = \psi + i\varphi$
- 66. In complex potential, derivative dW/dz gives:
 - (A) Pressure
 - (B) Velocity
 - (C) Stream function
 - (D) Circulation

67.	Com	plex potential automatically	72.	Blasius theorem is applicable in:			
	satisf	fies:		(A)	Potential flow theory		
	(A)	Navier-Stokes equation		(B)	Viscous boundary layers		
	(B)	Euler's equation		(C)	Turbulent wakes		
	(C)	Cauchy–Riemann conditions		(D)	Shock waves		
	(D)	Reynolds equation	73.	. ,	ılation " is defined as:		
68.		Milne-Thomson circle theorem is	73.	_			
	used	to obtain:		(A)	$\oint V. dl$		
	(A)	Flow around a cylinder		(B)	$ \oint \nabla \times V. dA $		
	(B)	Flow over a flat plate		(C)	$\int V^2 dA$		
	(C)	Flow in a pipe		(C)	$\int V = UA$		
	(D)	Flow over airfoil		(D)	$\nabla . V$		
69.	Milne	Milne-Thomson theorem ensures that:		For irrotational flow, circulation			
	(A) The boundary condition on a			around any closed path is:			
		cylinder is satisfied		(A)	Maximum		
	(B)	Continuity holds		(B)	Minimum		
	(C)	Energy is conserved		(C)	Zero		
	(D)	Flow is rotational		(D)	Infinite		
70.	Blasi	us theorem is used to calculate:	75.	. ,	Circulation is mathematically equal to:		
	(A)	Velocity distribution	73.				
	(B)	Lift and drag forces		(A)	Vorticity × area		
	(C)	Circulation		(B)	Velocity × distance		
	(D)	Energy dissipation		(C)	Pressure × length		
71.	In Bla	asius theorem, force components		(D)	Energy \times mass		
	are ex	are expressed as integrals of:		Kelv	Kelvin's theorem is based on:		
	(A)	•		(A)	Conservation of mass		
	(B)			(B)	Conservation of energy		

(C)

(D)

Stream function

Circulation

(C)

(D)

Conservation of circulation

Vorticity transport equation

- 77. The permanence of irrotational motion states:(A) Once irrotational, always irrotational in ideal fluid
 - (B) Flow cannot remain irrotational
 - (C) Irrotational motion becomes rotational after time
 - (D) Irrotational motion exists only in viscous fluid
- 78. This principle follows from:
 - (A) Kelvin's circulation theorem
 - (B) Bernoulli's theorem
 - (C) Continuity equation
 - (D) Helmholtz's theorem
- 79. Kelvin's minimum kinetic energy theorem states:
 - (A) Irrotational flow has minimum kinetic energy among all possible flows
 - (B) Viscous flow always has less energy
 - (C) Circulation minimizes kinetic energy
 - (D) Stream function minimizes kinetic energy

- 80. The general motion of a cylinder in 2D includes:
 - (A) Translation only
 - (B) Rotation only
 - (C) Both translation and rotation
 - (D) Vibrations only
- 81. The kinetic energy of a cylinder in potential flow is expressed in terms of:
 - (A) Mass and velocity only
 - (B) Added mass and velocity
 - (C) Pressure difference
 - (D) Circulation only
- 82. In 2D flow, the concept of added mass refers to:
 - (A) Mass of cylinder itself
 - (B) Virtual mass of displaced fluid accelerating with the body
 - (C) Total kinetic energy of flow
 - (D) Weight of fluid displaced
- 83. The added mass per unit length of a circular cylinder in 2D is:
 - (A) $\rho \pi a^2$
 - (B) ρa^2
 - (C) $2\rho\pi a^2$
 - (D) $\rho/\pi a^2$

- 84. The stream function for uniform flow past a circular cylinder of radius a is:
 - (A) $U(r-a^2/r)\sin\theta$
 - (B) $U(r + a^2/r) \cos \theta$
 - (C) $U(r-a^2/r)\cos\theta$
 - (D) $U(r^2 + a^2) \sin \theta$
- 85. In potential flow, the drag force on a circular cylinder is:
 - (A) Very high
 - (B) Equal to lift force
 - (C) Zero (d'Alembert's paradox)
 - (D) Infinite
- 86. The pressure distribution around a circular cylinder is obtained from:
 - (A) Euler's equation
 - (B) Bernoulli's equation
 - (C) Continuity equation
 - (D) Navier-Stokes equation
- 87. For two coaxial cylinders, the added mass depends on:
 - (A) Inner cylinder radius only
 - (B) Outer cylinder radius only
 - (C) Both inner and outer radii
 - (D) None of these

- 88. In 2D flow, the added mass of an elliptic cylinder moving along its major axis is:
 - (A) Larger than that along minor axis
 - (B) Smaller than that along minor axis
 - (C) Same along both axes
 - (D) Zero
- 89. For elliptic cylinders, the added mass coefficients depend on:
 - (A) Density only
 - (B) Axis ratio (a/b)
 - (C) Circulation
 - (D) Stream function
- 90. The flow past a fixed circular cylinder is symmetric unless:
 - (A) Cylinder rotates
 - (B) Circulation is introduced
 - (C) Viscosity is considered
 - (D) All of these
- 91. Lift per unit length of a circular cylinder with circulation Γ is given by:
 - (A) $\rho U^2 \pi a^2$
 - (B) $\rho U\Gamma$
 - (C) $\frac{1}{2}\rho U^2$
 - (D) $\rho\Gamma^2$

92.	For a	n elliptic cylinder, circulation					
	causes:						
	(A)	Zero lift					

- (B) Pressure imbalance → lift generation
- (C) No effect on motion
- (D) Only drag increase
- 93. The kinetic energy of a rotating elliptic cylinder includes:
 - (A) Rotational KE only
 - (B) Translational KE only
 - (C) Both translational KE and added mass effect
 - (D) Pressure energy only
- 94. The kinetic energy due to added mass for elliptic cylinder moving along its major axis is proportional to:
 - (A) a^2
 - (B) b^2
 - (C) ab
 - (D) a^3
- 95. The kinetic energy for rotation of an elliptic cylinder about its axis depends on:
 - (A) Axis lengths a and b
 - (B) Circulation Γ only
 - (C) Uniform velocity U only
 - (D) None of these

- 96. An aerofoil is designed to produce:
 - (A) Maximum drag
 - (B) Maximum lift with minimum drag
 - (C) Zero circulation
 - (D) Only turbulence
- 97. The circulation around an aerofoil is related to lift by:
 - (A) Blasius theorem
 - (B) Kutta–Joukowski theorem
 - (C) Bernoulli's equation
 - (D) Kelvin's theorem
- 98. The Kutta condition applied to aerofoils states:
 - (A) Flow leaves smoothly at trailing edge
 - (B) Circulation is maximum
 - (C) Pressure is minimum
 - (D) Velocity is uniform everywhere
- 99. The lift coefficient of an aerofoil in potential flow varies linearly with:
 - (A) Drag coefficient
 - (B) Angle of attack (α)
 - (C) Pressure coefficient
 - (D) Mach number
- 100. The lift per unit span of an aerofoil is:
 - (A) $L = \rho U^2 a^2$
 - (B) $L = \rho U \Gamma$
 - (C) $L = \rho \Gamma^2 / 2$
 - (D) $L = U/\Gamma$

Rough Work / रफ कार्य

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।