Roll. No	Question Booklet Number
O.M.R. Serial No.	

M.A./M.Sc. (SEM.-III) (NEP) (SUPPLE.) EXAMINATION, 2024-25

MATHEMATICS

(Abstract Algebra)

Paper Code								
В	0	3	0	9	0	1	T	

Abstract Algebra

Question Booklet Series

A

Max. Marks: 75

Time: 1:30 Hours

Instructions to the Examinee:

Do not open the booklet unless you are asked to do so.

- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

- 1. The internal direct product is defined for :
 - (A) Pair of finite groups
 - (B) Pair of infinite groups
 - (C) Pair of a finite group and an infinite groups
 - (D) Above all are correct
- 2. Let $G = H \times K$ is external direct product of two groups H and K, then G is an abelian if:
 - (A) H is abelian
 - (B) K is abelian
 - (C) Both H and K are abelians
 - (D) None of the above is correct
- 3. Let *G* is a singleton set then possible number of fields on *G* are :
 - (A) One
 - (B) Infinitely many
 - (C) No field is possible
 - (D) Two fields are possible
- 4. Let $G = H \cdot K$ is internal direct product of two subgroups H and K if:
 - (A) Each element of H commutes with each element of K
 - (B) Every element of G is uniquely expressed as an element of H and an element of K
 - (C) Both (A) and (B) must hold
 - (D) Neither (A) nor (B) hold
- 5. Let H is a subgroup of G, then:
 - (A) $H^{-1} = H$
 - (B) $H \subset HH$
 - (C) $HH \subset H$
 - (D) $H \subset H^{-1}$

- 6. H is subgroup of G iff:
 - (A) $ghg^{-1} \in H$, $\forall g \in G$, $h \in H$
 - (B) $ab^{-1} \in H, \forall a, b \in H$
 - (C) $a \in H, b \in G \text{ then } a^{-1}ba \in G$
 - (D) None of these
- 7. In a group number of improper subgroups is:
 - (A) Nil
 - (B) One
 - (C) Two
 - (D) Three
- 8. Union of two subgroups is:
 - (A) Subgroup
 - (B) Empty set
 - (C) Singleton set having identity
 - (D) None of the above
- 9. A coset of set in G is:
 - (A) A subgroup
 - (B) Not a subgroup
 - (C) A ring
 - (D) A field
- 10. If *n* is a positive integer and *a* is relative *p*, then $a^{\phi(n)} \equiv 1 \pmod{n}$ is :
 - (A) Fermat's theorem
 - (B) Lagrange theorem
 - (C) Euler's theorem
 - (D) None of these

- 11. Lagrange theorem for finite group is:
 - (A) Order of each subgroup divides order of the group
 - (B) Order of subgroup is not divisor of order of group
 - (C) Every divisor of order of group has a subgroup
 - (D) Above all are correct
- 12. Every group of prime order is:
 - (A) Abelian
 - (B) Cyclic
 - (C) Normal subgroup
 - (D) Above all are correct
- 13. A subgroup *H* is normal subgroup of the group *G* if:
 - (A) $gHg^{-1} = H, \forall g \in G$
 - (B) $Hg = gH, \forall g \in G$
 - (C) $ghg^{-1} \in H, \forall g \in G, h \in H$
 - (D) Above all are correct
- 14. A finite series is subnormal series on a finite group *G* if:
 - (A) G has only two subgroups only
 - (B) $G \supset G_1 \supset G_2 \supset \supset G_i \supset$ $G_{i+1} \supset$, such that G_{i+1} is normal subgroup of G_i for i=1,2.....
 - (C) Each factor group G_i / G_{i+1} is abelian
 - (D) None of these is correct

- 15. A group G is solvable if:
 - (A) It has a subnormal chain
 - (B) It has a subnormal chain with abelian factor group
 - (C) It has a composition chain
 - (D) None of these is correct
- 16. Let G be a group then a chain if subgroups of G is composition chain if:
 - (A) $G_0\supset G_1\supset G_2\supset....\supset G_{i-1}\supset$ G_i and G_i is a normal in G_{i-1}
 - (B) G_i is maximal normal in G_{i-1} for $i=1,2,\ldots$ in $G_0\supset G_1\supset G_2\supset\ldots\supset G_{i-1}\supset G_i\ldots$
 - (C) G is solvable
 - (D) None of these
- 17. Let f is a homomorphism from group *G* to *G'* with kernel *K* then the first theorem on homomorphism says :
 - (A) Kernel is an empty set
 - (B) Kernel is a subgroup of G
 - (C) Kernel is normal subgroup of *G*
 - (D) Kernel is normal subgroup of G'
- 18. Let $f: G \rightarrow G/N$ is a homomorphism on group G where N is normal subgroup then:
 - (A) $\ker f = N$
 - (B) $\ker f = G$
 - (C) $\ker f = G / N$
 - (D) None of these

- 19. Let $f: G \to G'$ is a homomorphism then:
 - (A) Every homomorphism image of f is isomorphic to G/K where $K = \ker f$
 - (B) $G' \cong \ker f$
 - (C) $G' \simeq G$
 - (D) None of the above is true
- 20. According to the third isomorphism theorem, if N is normal subgroup and H is any subgroup of G then:
 - (A) $NH/H \cong N$
 - (B) $NH/N \cong H/H \cap N$
 - (C) $NH/N \cong H \cap N$
 - (D) $NH/N \cong H \cap N/H$
- 21. An automorphism is a:
 - (A) Map from G to G
 - (B) A homomorphism from G to G
 - (C) An isomorphism from G to G
 - (D) An endomorphism
- 22. The set of all automorphism on G to G forms a group w.r.t.:
 - (A) Addition
 - (B) Multiplication
 - (C) Composition of maps
 - (D) None of these
- 23. Let N be a maximal normal subgroup of G then:
 - (A) G/N is abelian
 - (B) G/N is simple
 - (C) G/N is cyclic group
 - (D) Above all are correct

- 24. The Jordan Holder theorem is related to:
 - (A) Composition series
 - (B) Subnormal series
 - (C) Both (A) and (B)
 - (D) None of these
- 25. According to Jordan Holder theorem two composition chains of a group are:
 - (A) Equivalent
 - (B) Homomorphic
 - (C) Isomorphic
 - (D) Above all are correct
- 26. Let G be a group of order 11 then:
 - (A) G is cyclic
 - (B) G is non abelian
 - (C) G has proper normal subgroup
 - (D) Above all are correct
- 27. Let A_n is a subgroup of S_n then:
 - (A) A_n is normal subgroup of S_n
 - (B) A_n is not normal subgroup of S_n
 - (C) A_n is coset, not subgroup
 - (D) None is correct
- 28. Let G' is commutator subgroup of a group G then :
 - (A) G' is normal
 - (B) G/G' is abelian
 - (C) Both (A) and (B) are correct
 - (D) Neither (A) nor (B) is correct

- 29. Let G be an abelian group then commutator of G is:
 - (A) $\{e\}$
 - (B) *G*
 - (C) ϕ
 - (D) None of the above
- 30. Let o(G) = 49 then:
 - (A) G is cyclic group
 - (B) G is abelian group
 - (C) G is non-cyclic group
 - (D) None is correct
- 31. Let G be a group and H be a subgroup then H is always normal if the index is:
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 32. If the normalizer of an element is 'a', then the group G is:
 - (A) Collection of those elements of G that commutes with 'a'
 - (B) $\{e\}$
 - (C) \(\phi \)
 - (D) *G*
- 33. Let *G* be abelian group and $a \in G$ then normalizer of *a* in *G* is :
 - (A) $N(a) = \{e\}$
 - (B) $N(a) = \phi$
 - (C) N(a) = G
 - (D) None of the above is correct

- 34. o(G/N) is equal to :
 - (A) o(G)
 - (B) o(N)
 - (C) o(G)/o(N)
 - (D) Above all
- 35. Centre of a group G is Z then:
 - (A) $Z = \{x \in G : xg = gx, \forall g \in G\}$
 - (B) $Z = \{e\}$
 - (C) $Z = \phi$
 - (D) $Z = \{x, e\}$
- 36. Let G be abelian group then its centre is:
 - (A) $Z = \phi$
 - (B) $Z = \{e\}$
 - (C) Z = G
 - (D) Above all are correct
- 37. Let N_1 and N_2 are normal subgroups of G then the true statement is:
 - (A) $N_1 \cap N_2$ and $N_1 N_2$ are normal
 - (B) $N_1 N_2$ and $N_1 \cup N_2$ are normal
 - (C) $N_1 \cap N_2$ is normal but $N_1 N_2$ is not
 - (D) $N_1 \cup N_2$ is normal but $N_1 N_2$ is not
- 38. Every quotient group if a cyclic group *G* is cyclic is:
 - (A) True
 - (B) False
 - (C) Cannot determined
 - (D) None is correct

- 39. A homomorphism from G to G is :
 - (A) Automorphism
 - (B) Isomorphism
 - (C) Endomorphism
 - (D) None of these
- 40. A group of order 15 is:
 - (A) Cyclic
 - (B) Non cyclic
 - (C) Non abelian
 - (D) None of these
- 41. A group of order 28 has:
 - (A) Normal subgroup of order 7
 - (B) No normal subgroup
 - (C) No proper normal subgroup
 - (D) None of these
- 42. According to 2nd isomorphism theorem:
 - (A) If H and K are normal subgroups and $H \subset K$ then $G/K \cong G/H/K/H$
 - (B) H is isomorphic to GK/H
 - (C) $H \cong GH / K$
 - (D) None of these
- 43. Class equation is:
 - (A) o(G) = o(Z)

(B)
$$o(G) = o(Z) + \sum \frac{o(G)}{o[N(a)]}$$

(C)
$$o(G) = o(Z) + \sum_{a \notin Z} \frac{o(G)}{o(N(a))}$$

(D) None of these

- 44. The centre of a group G is:
 - (A) Normal subgroup
 - (B) A subgroup
 - (C) Not a subgroup
 - (D) Not a normal subgroup
- 45. Normalizer of an element a of group *G* is:
 - (A) Normal subgroup
 - (B) A subgroup
 - (C) Not a subgroup
 - (D) None is correct
- 46. Let *G* be a group of order 10 then *G* has:
 - (A) No proper normal subgroup
 - (B) at least one proper normal subgroup
 - (C) only normal subgroup $\{e\}$
 - (D) G as only normal subgroup G
- 47. Let H_1 and H_2 are two subgroups of a group G then:
 - (A) $H_1 \cap H_2$ is a subgroup
 - (B) $H_1 \cup H_2$ is a subgroup
 - (C) $H_1 H_2$ is a subgroup
 - (D) $H_1 + H_2$ is a subgroup
- 48. A group G has:
 - (A) Unique identity
 - (B) Not unique inverse
 - (C) G has only finitely many elements
 - (D) None of these

- 49. Let H and K are subgroups of finite group G and $H \subset K$ then:
 - (A) [G:H] = [G:K][K:H]
 - (B) [G:H] = [G:K]
 - (C) [G:H]=[H:K]
 - (D) None of these
- 50. The correct statement is:
 - (A) Every group of order less or equal to 6 is abelian
 - (B) Every group of order less than 6 is abelian
 - (C) Non abelian group of order less than G is possible
 - (D) None is correct
- 51. Every homomorphic image of solvable group is:
 - (A) Not solvable group
 - (B) Nilpotent group
 - (C) Solvable group
 - (D) Commutator group
- 52. Let e_1 is identity of G_1 and e_2 is identity of G_2 then $G \times \{e_2\}$ and $\{e_1\} \times G$ has common element:
 - (A) $G_1 \times G_2$
 - (B) $\{e_1 \times e_2\}$
 - (C) $\{e_1\} \times \{e_2\} \times G_1$
 - (D) $\{e_1\} \times \{e_2\} \times G_2$

- 53. Let *G HoK* is internal direct product of *H* and *K* then:
 - (A) Each element g of G is unique product of an element of H and element of K
 - (B) $g \in G$ and g = hk where $h \in H$ and $k \in K$ then this expression is not unique
 - (C) Each element of G is not decomposed
 - (D) There is no difference in internal and external direct product
- 54. Let $G = H \times K$ is external direct product of groups H and K and H, K are normal subgroups of G then incorrect statement is :
 - (A) $G/H \cong K$
 - (B) $G/K \cong H$
 - (C) Both (A) and (B) are correct
 - (D) None of the above is correct
- 55. Let G be a group and a prime number p divides order of G then:
 - (A) $\exists a \in G \text{ s.t. } a^p = e$
 - (B) No element of order p is in G
 - (C) A prime p cannot divide order of G
 - (D) None is correct
- 56. Let G be group of order 5 then the incorrect statement is:
 - (A) G is a cyclic group
 - (B) G is abelian group
 - (C) Both (A) and (B) are correct
 - (D) None is correct

- 57. Let *G* be a group of order 15 then it has:
 - (A) No element of order 3
 - (B) No element of order 5
 - (C) It has elements of order 3 and 5
 - (D) It has an element of order 11
- 58. Cauchy theorem for finite is:
 - (A) True only for abelian group
 - (B) True only for non abelian group
 - (C) Trur for abelian and non abelian groups
 - (D) None of the above
- 59. Sylow theorem is:
 - (A) a sort of converse of Lagrange theorem
 - (B) a sort of converse of Cauchy theorem
 - (C) a sort of converse of Fermat's theorem
 - (D) None of these
- 60. The Cauchy theorem for finite abelian group is proved by help of :
 - (A) Centre
 - (B) Normalizer
 - (C) Class equation
 - (D) None of these
- 61. Sylow theorem:
 - (A) p is prime number and $p^m/o(G)$ then G has a subgroup of order p^m
 - (B) $p^m / o(G)$ and $p^{m+1} o(G)$ then G has a subgroup of order p^m

- (C) Sylow theorem is related to ring
- (D) Sylow theorem is related to a field
- 62. Let H_1 and H_2 are two Sylow subgroups of group G then:
 - (A) H_1 and H_2 are same
 - (B) H_1 and H_2 are conjugate
 - (C) $H_1 \cup H_2 = G$
 - (D) $H_1 \cap H_2 = \phi$
- 63. Let *n* is number of Sylow *p* subgroup of *G* then :
 - (A) n = 1 + kp where k = 0, 1, 2, ...
 - (B) n = kp
 - (C) $n \equiv 1 \pmod{2p}$
 - (D) None is correct
- 64. Let *H* and *K* are two subgroups of *G* then:
 - (A) $o(HK) = o(H) \cdot o(K)$

(B)
$$o(HK) = \frac{o(H) \cdot o(K)}{o(H \cap K)}$$

- (C) o(HK) = o(H) o(K)
- (D) o(HK) = o(H) + o(K)
- 65. Let G be a group of order $p \cdot q$ where p and q are prime numbers then:
 - (A) G has a subgroup of order p
 - (B) G has no subgroup of order q
 - (C) G has no subgroup of order p
 - (D) G has no proper subgroup

- 66. Let $o(G) = p \cdot q \cdot r$ where p, q, r are prime then :
 - (A) G is not simple group
 - (B) G is simple group
 - (C) G is non abelian group
 - (D) G is not cyclic group
- 67. Let o(G) = 45 then:
 - (A) G is non abelian
 - (B) G is simple
 - (C) G is abelian
 - (D) None is correct
- 68. Let o(G) = 120 then:
 - (A) G is simple group
 - (B) G is not simple
 - (C) G is abelian
 - (D) G is non abelian
- 69. For a group of order 30 which is incorrected?
 - (A) Cyclic
 - (B) Abelian
 - (C) Both cyclic and abelian
 - (D) All are incorrect
- 70. A group of order 56 has:
 - (A) Sylow subgroup of order 10
 - (B) Sylow subgroup of order 8
 - (C) No Sylow subgroup of order 7
 - (D) None of these is correct

- 71. Structure theorem is based on:
 - (A) The direct product
 - (B) Class equation
 - (C) Centre
 - (D) Normalizer
- 72. A group of order 25 is:
 - (A) Abelian
 - (B) Non abelian
 - (C) Non cyclic
 - (D) None is correct
- 73. Group action G on a set X is :
 - (A) A cross product of G and X
 - (B) A map from $G \times X \to X$
 - (C) $G = X \cdot e$
 - (D) $X = G \cdot X$
- 74. Group action of G on X has :
 - (A) Identity property only
 - (B) Compatibility property only
 - (C) Both Compatibility and identity properties hold
 - (D) All are incorrect
- 75. Example of group action is:
 - (A) Permutation action on $\{1, 2, \dots, r\}$
 - (B) Translation action
 - (C) Matrix action
 - (D) All are correct

- 76. Canonical form of a matrix is:
 - (A) Rational form of matrix
 - (B) Triangular form
 - (C) Jordan form
 - (D) All are correct
- 77. Two matrices are similar if \exists non singular matrix P such that:
 - (A) B = PA
 - (B) $B = P^{-1}AP$
 - (C) $B = PAP^{-1}A^{-1}$
 - (D) None of these
- 78. Let $T: V_n \to U_m$ is a linear transformation and there is given basis of V_n and U_m :
 - (A) The associated matrix is of order $n \times m$
 - (B) Associated matrix of order $m \times n$
 - (C) Associated matrix is not unique
 - (D) None is correct
- 79. Let $T: U \to V$ is a linear transformation and $\rho(T) = r$ then there exist a basis:
 - (A) $A = [I_r]$
 - (B) $A = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$
 - (C) A = Constant matrix
 - (D) None is correct
- 80. The correct statement is:
 - (A) Let $T \in A(V)$ and characteristics root of T lies in the field then \exists basis s.t. the associated matrix is triangular

- (B) No relation of triangular matrix with characteristic root in F
- (C) Both (A) and (B) are true
- (D) None is true
- 81. λ is characteristic root of $T: V_n \to V_n$ then:
 - (A) $TX = \lambda X$
 - (B) $TX = \lambda^2 X$
 - (C) $TX = \lambda^{-1}X$
 - (D) TX = AX
- 82. Every polynomial over field F can be:
 - (A) Product of unit time a monic polynomial
 - (B) Every polynomial is monic polynomial
 - (C) Every polynomial is unit
 - (D) None is correct
- 83. A subspace W in V is invariant under $T: V \rightarrow V$ over field F if:
 - (A) $T(W) \subset V$
 - (B) $T(W) \subset W$
 - (C) T(W) = W
 - (D) $T(W) = \{e\}$
- 84. Let W is invariant under $T: V \to V$ and $S: V \to V$ then W is invariant under:
 - (A) S+T
 - (B) *ST*
 - (C) Both ST and S+T
 - (D) All are correct

- 85. *T* is nilpotent linear transformation if:
 - (A) $T^n = 0$ for some positive
 - (B) $T(X) = 0, \forall X \in V$
 - (C) T(X) = X
 - (D) $T(X) = \lambda X$
- 86. Let T is nilpotent operator from V to V of index of nilpotency α then:
 - (A) $T^{\alpha}(x) = 0, \forall x \in V$
 - (B) $T^{\alpha-1}(x) \neq 0$
 - $(C) T^{\alpha+1}(x) = 0$
 - (D) All are correct
- 87. Index of nilpotency of matrix

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 is :

- (A) 1
- (B) 2
- (C) 3
- (D) 0
- 88. In the Jordan canonical form:
 - (A) The right diagonal entries are
 - (B) All super diagonal entries are 1 and diagonal entries are zero
 - (C) All right diagonal entries are λ
 - (D) None of the above
- 89. The degree of characteristic polynomial is m and degree of minimal polynomial is n then:
 - (A) m = n
 - (B) $m \le n$

- (C) $n \le m$
- (D) $m \neq n$
- 90. Jordan form of a matrix:
 - (A) Matrix having diagonal Jordan blocks
 - (B) Matrix in rational form
 - (C) Matrix in triangular form
 - (D) Above all are correct
- 91. A possible rational canonical form of 6×6 matrix having minimal polynomial $m(x) = (x+1)^3$ is:
 - (A) $c(x+1)^3 \oplus c(x+1)^3$
 - (B) $c(x+1)^3 \oplus c(x+1)$
 - (C) $c(x+1)^2 \oplus c(x+1)^2$
 - (D) $c(x+1) \oplus c(x+1)$
- 92. Let $a_0 + a_1x + a_2x^2 + a_3x^3 + x^4$ then the companion matrix is:
 - (A) $\begin{bmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & a_2 \\ 0 & 0 & 1 & a_3 \end{bmatrix}$
 - (B) $\begin{bmatrix} 0 & 0 \cdots 0 & -a_0 \\ 1 & 0 \cdots 0 & -a_2 \\ 0 & 0 \cdots 0 & -a_3 \end{bmatrix}$
 - (C) Identity matrix
 - (D) $\begin{bmatrix} 0 & 0 & 0 & -a_0 \\ 1 & 0 & 0 & -a_1 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_3 \end{bmatrix}$

- 93. If characteristic polynomial and minimal polynomial both are given then the associated linear transformation matrix is:
 - (A) Unique
 - (B) Not unique
 - (C) Identity matrix
 - (D) Nilpotent matrix
- 94. If the characteristic polynomial is given then associated canonical form in:
 - (A) Unique
 - (B) Many matrixes (Not unique)
 - (C) Identity matrix
 - (D) Rational form
- 95. If minimal polynomial of a linear transformation is given then number of possible Jordan form is:
 - (A) Unique
 - (B) Not unique
 - (C) Unique identity matrix
 - (D) Many blocks
- 96. Rational canonical form arises when:
 - (A) Characteristic polynomial is factorized in linear factors
 - (B) Characteristic polynomial has factors quadratic or higher order
 - (C) Characteristic polynomial does not exist
 - (D) All are correct

97. How many Jordan canonical form is possible for $T: V \rightarrow V$ where characteristic polynomial is

$$\Delta(x) = (x-2)^3(x-5)^2$$
:

- (A) 2
- (B) 3
- (C) 5
- (D) 6
- 98. Algebra word means:
 - (A) Hidden fact
 - (B) Large trunk
 - (C) Imagination
 - (D) Thought
- 99. Two nilpotent linear transformation are equivalent iff:
 - (A) They have same invariant
 - (B) They have same rank
 - (C) They have same base
 - (D) None of these
- 100. Trace of a matrix is:
 - (A) Sum of all entries
 - (B) Sum of right diagonal entries
 - (C) Sum of column elements
 - (D) Sum of eigenvectors

Rough Work

Rough Work

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।