Roll. No	Question Booklet Number
O.M.R. Serial No.	

M.Sc. (SEM.-IV) (NEP) (SUPPLE.)EXAMINATION, 2024-25 CHEMISTRY

(Organic Synthesis)

Paper Code							
В	0	2	1	0	0	1	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

1.	Which of the following organometallic reagents is commonly	5.	What is the major drawback of using Grignard reagents?		
	used in nucleophilic addition to carbonyl compounds?		(A) They are explosive		
	(A) Grignard reagent		(B) They are unreactive(C) They are highly moisture-		
	(B) Organosilane(C) Organoborane		sensitive (D) They are toxic		
2.	(D) Organocuprate Which metal is involved in the formation of a Grignard reagent?	6.	Which organometallic compound is commonly prepared by direct reaction		
	formation of a Grignard reagent? (A) Lithium		of an alkyl halide with lithium? (A) R ₂ Zn		
	(B) Magnesium(C) Zinc		(B) R ₂ CuLi (C) RLi		
3.	(D) Copper What is the general formula of a Grignard reagent?	7.	(D) RMgBrOrganolithium reagents are generallythan Grignard reagents.		
	(A) RMgBr (B) RLi		(A) Less reactive(B) More reactive		
	(C) RZnX (D) R,CuLi		(C) Equally reactive(D) Inert		
4.	Which solvent is typically used in Grignard reagent reactions?	8.	(D) Inert Which metal is used to prepare organozinc reagents?		
	(A) Water(B) Methanol		(A) Li (B) Mg		
	(C) Diethyl ether(D) Acetone		(C) Zn (D) Cu		

(3)

[P.T.O.]

B021001T-A/100

9.	Whice reagon	13.	Which metal is used in the Suzuki coupling reaction?		
	form	ation?		(A)	Ni
	(A)	Wurtz reaction		(B)	Pd
	(B)	Reformatsky reaction		(C)	Cu
	(C)	Friedel-Crafts acylation		(D)	Fe
	(D)	Kolbe reaction	14.		ch organometallic compound
10.	Gilm	an reagents are also known as:			eipates in the Negishi coupling?
	(A)	Organoboranes		(A)	Organoboron
	(B)	Organocuprates		(B)	Organolithium
	(C)	Organosilanes		(C)	Organozinc
	(D)	Organozines		(D)	Organosilicon
11.	Whice reage	ch of the following is a Gilman nt?	15.		reaction involves the coupling of halides with:
	(A)	RLi		(A)	Alkanes
	(B)	R ₂ Mg		(B)	Alkenes
	(C)	R ₂ CuLi		(C)	Alkynes
	(D)	R_3B		(D)	Alcohols
12.		t is the oxidation state of copper Iman reagent (R ₂ CuLi)?	16.		lle coupling, the organometallic er is based on which element?
	(A)	0		(A)	В
	(B)	+1		(B)	Sn
	(C)	+2		(C)	Si
	(D)	-1		(D)	Zn
B021	001T-A	/100 (4)		

17.	The active catalytic species in the Heck 21. reaction is:			The mechanism of hydroboration involves:		
	(A)	Pd(0)		(A)	Radical substitution	
	(B)	Ni(II)		(B)	Electrophilic addition	
	(C)	Cu(I)		(C)	Concerted syn addition	
	(D)	Fe(III)		(D)	Nucleophilic elimination	
18.	Which of the following is NOT typically involved in transition metal catalyzed cross coupling?		22.	π-ba	h of the following elements form ckbonding organometallic lexes?	
	(A)	Pd		(A)	Na	
	(B)	Fe		(B)	Fe	
	(C)	Cu		(C)	В	
	(D)	Na		(D)	Si	
19.	_	nosilanes are typically used in type of reaction?	23.	Which metal catalyzes Kumada coupling?		
	(A)	Oxidation		(A)	Zn	
	(B)	Cross-coupling		(B)	Pd	
	(C)	Nucleophilic addition		(C)	Ni	
	(D)	Peterson olefination		(D)	Fe	
20.	in th	Which compound is commonly used in the synthesis of alcohols via hydroboration oxidation?		Which reagent is commonly used in the hydrosilylation of alkenes?		
	(A)	B_2H_6		(A)	R ₃ SiH	
	(B)	BH ₃ THF		(B)	SiCl ₄	
	(C)	BB_{r3}		(C)	NaSiH ₃	
	(D)	$NaBH_4$		(D)	B_2H_6	
B0210	001T-A/	(100)	5)		[P.T.O.]	

- 25. Which of the following organometallic species is the least nucleophilic?
 - (A) RLi
 - (B) RMgBr
 - (C) R,CuLi
 - (D) R,SiH
- 26. Oxidation in organic chemistry generally involves:
 - (A) Gain of hydrogen
 - (B) Loss of oxygen
 - (C) Loss of hydrogen or gain of oxygen
 - (D) Gain of electrons
- 27. Which of the following best defines an oxidation process?
 - (A) Increase in C-H bonds
 - (B) Decrease in oxidation state
 - (C) Increase in the number of C-O bonds
 - (D) Conversion of ketone to alcohol
- 28. Which reagent is commonly used for the epoxidation of alkenes?
 - (A) PCC
 - (B) m-CPBA
 - (C) DIBAL-H
 - (D) LiAlH₄
- 29. Which of the following is not a typical outcome of alkene oxidation?

- (A) Epoxide formation
- (B) Dihydroxylation
- (C) Cleavage to carbonyls
- (D) Hydrogenation
- 30. Ozonolysis of an alkene typically gives:
 - (A) Alcohols
 - (B) Ketones and/or aldehydes
 - (C) Carboxylic acids
 - (D) Epoxides
- 31. Which oxidant is used in the Sharpless asymmetric dihydroxylation of alkenes?
 - (A) RuO₄
 - (B) OsO_4
 - (C) KMnO₄
 - (D) Pb(OAc),
- 32. Which functional group is most easily oxidized?
 - (A) Tertiary alcohol
 - (B) Ketone
 - (C) Primary alcohol
 - (D) Ether
- 33. What is the product of oxidation of a primary alcohol with Jones reagent?
 - (A) Aldehyde
 - (B) Ketone
 - (C) Carboxylic acid
 - (D) Ester

34.	Whic	h o	f the f	ollow	ing	reagents
	oxidi	zes	secon	ndary	alc	ohols to
	keton	es?				
	(A)	Na	aBH ₄			
	(B)	Kl	MnO ₄			
	(C)	PC	CC			
	(D)	Li	AlH ₄			
35.	Which	h o	xidant	selecti	ively	oxidizes
	prima	ry a	lcohols	to alde	ehyd	es without
	over-c	oxid	lation?			
	(A)	KI	MnO ₄			
	(B)	PC	CC			
	(C)	H_2	CrO ₄			
	(D)	Jo	nes reaș	gent		
36.	Vicin	al	diols	can	be	cleaved
	oxidat	tive	ly using	·• ·•		

oxidize ketones?

(A)

B021001T-A/100

KMnO₄

(D) O, 39. Which of the following groups is hardest to oxidize? (A) Primary alcohol (B) Aldehyde zes Tertiary alcohol (C) out (D) Secondary alcohol 40. Oxidation of activated benzylic C-H (such as toluene) with KMnO₄ gives: (A) Benzyl alcohol Benzaldehyde (B) Benzoic acid (C) red (D) Styrene 41. Which reagent oxidizes unactivated **PCC** (A) C-H bonds selectively under mild NaBH₄ (B) conditions? Periodic acid (HIO₄) (C) m-CPBA (A) (D) LiAlH, (B) RuO_{4} Which reagent oxidizes aldehydes to 37. (C) NaIO, carboxylic acids? (D) Н,О, (A) **PCC** 42. Which of the following oxidants can NaBH, (B) convert amines to nitroso or nitro Tollens' reagent (C) compounds? **PCC** (D) **DIBAL-H** (A) Which of the following does not 38. KMnO₄ (B)

(B)

(C)

Chromic acid

PCC

m-CPBA

[P.T.O.]

HNO,

(C)

(D)

(7)

- 43. What is the product of oxidizing a sulfide (R–S–R) with a mild oxidant like H2O2?
 - (A) Disulfide
 - (B) Thiol
 - (C) Sulfoxide
 - (D) Sulfone
- 44. Further oxidation of a sulfoxide leads to:
 - (A) Sulfide
 - (B) Sulfone
 - (C) Thiol
 - (D) Disulfide
- 45. Which of the following can oxidize hydrazines (R-NH-NH₂) to azo compounds?
 - (A) O_3
 - (B) PCC
 - (C) H_2CrO_4
 - (D) Pb(OAc)₄
- 46. Which high-valent metal oxide is a strong oxidant, especially for diols and alcohols?
 - (A) RuO₄
 - (B) NiCl,
 - (C) CuCl
 - (D) FeSO₄

- 47. Ruthenium tetraoxide is typically generated in situ using:
 - (A) $RuCl_3 + NaIO_4$
 - (B) $RuO_2 + H_2O_2$
 - (C) $RuB_{r3} + O_3$
 - (D) $RuO_4 + H_2O$
- 48. Iodobenzene diacetate (PhI(OAc)₂) is classified as:
 - (A) A Lewis acid
 - (B) An oxidizing hypervalent iodine reagent
 - (C) A reducing agent
 - (D) A peroxide
- 49. Which reagent is used to oxidize alkenes to vicinal diacetates in presence of acetic acid?
 - (A) $Tl(NO_3)_3$
 - (B) OsO_4
 - (C) PhI(OAc)₂
 - (D) m-CPBA
- 50. Which reagent can oxidize alcohols and cleave 1,2-diols but is toxic and rarely used today?
 - (A) PhI(OAc),
 - (B) KMnO₄
 - (C) $Tl(NO_3)_3$
 - (D) PDC

51.	Redu	ction in organic chemistry		(A)	H ₂ /Pd	
	typica	ally involves :		(B)	Na/NH ₃	
	(A)	Loss of hydrogen		(C)	LiAlH ₄	
	(B)	Gain of oxygen		(D)	Zn/HCl	
	(C)	Gain of hydrogen or loss of oxygen	56.		ction of an aromatic ring under conditions yields:	
	(D)	Loss of electrons		(A)	Fully saturated ring	
52.	Catal	ytic hydrogenation of an alkene		(B)	A trans-alkene	
	typica	ally uses:		(C)	1,4-cyclohexadiene	
	(A)	LiAlH ₄		(D)	No reaction	
	(B) (C)	H ₂ with Pd/C PCC	57.		h reagent is typically used to e aldehydes to primary alcohols?	
	(D)	$KMnO_{4}$		(A)	PCC	
53.		th of the following reduces		(B)	LiAlH ₄	
		es to alkanes?		(C)	CrO ₃	
	(A)	H ₂ /Pt		(D)	AgNO ₃	
	(B)	NaBH ₄	58.	NaBF	H ₄ reduces which of the following	
	(C)	PCC		functional groups effectively?		
	(D)	OsO_4		(A)	Carboxylic acids	
54.	What	is the product of reducing an		(B)	Amides	
		e with Lindlar's catalyst?		(C)	Aldehydes and ketones	
	(A)	Alkane		(D)	Esters	
	(B)	Trans-alkene	59.	LiAlI	H ₄ reduces esters to:	
	(C)	Cis-alkene		(A)	Aldehydes	
	(D)	Diene		(B)	Alcohols	
55.	Whic	ch reagent is used for the		(C)	Ketones	
		ving metal reduction of alkynes?		(D)	Acids	

51.

60.	Which of the following carbonyl		(A) Ketone
	compounds is most resistant to		(B) Nitro group
	reduction by NaBH ₄ ?		(C) Alcohol
	(A) Aldehyde		(D) Amide
	(B) Ketone	65.	Reduction of azo compounds typically
	(C) Carboxylic acid		gives:
	(D) Acyl chloride		(A) Amines
61.	Which reducing agent is selective for		(B) Alcohols
	converting acid chlorides to		(C) Carboxylic acids
	aldehydes?	66.	(D) Alkenes
	(A) LiAlH ₄		Which of the following can reduce an
	(B) DIBAL-H		oxime to an amine?
	(C) NaBH ₄		(A) PCC
	(D) H_2/Pt		(B) Zn/AcOH
62.	Which reducing agent can reduce		(C) KMnO ₄
	nitriles to primary amines?		(D) DMP
	(A) PCC	67.	Cleavage of C–O or C–N single bonds
	(B) DIBAL-H		by hydrogenation is known as:
	(C) LiAlH ₄		(A) Hydrolysis
	(D) NaBH ₄		(B) Hydrogenolysis
63.	Catalytic hydrogenation of		(C) Dehydrogenation
	nitrobenzene typically gives:		(D) Isomerization
	(A) Phenol	68.	Which reagent can perform
	(B) Aniline	00.	hydrogenolysis of benzyl ethers?
			,

(C)

(D)

64.

Benzaldehyde

Which group is reduced by Zn/HCl in

Benzene

acidic medium?

 $KMnO_4$

H₂/Pd

NaBH₄

PCC

(A)

(B)

(C)

(D)

			(B)	LiAlH ₄
hydro			(C)	DIBAL-H
(A)	H ₂ /Pd under high pressure		(D)	H ₂ /Pt
(B)	NaBH ₄ in methanol	74.	Whic	ch of the following reduces
(C)	PCC in CH ₂ Cl ₂		carbo	exylic acids directly to alcohols?
(D)	Na/NH ₃		(A)	NaBH ₄
Whic	h reagent selectively reduces		(B)	PCC
epox	ides to alcohols under basic		(C)	LiAlH ₄
condi	tions?		(D)	DIBAL-H
(A)	PCC	75.	Redu	ction of acyl chlorides with H,
(B)	LiAlH ₄		and L	indlar catalyst gives:
(C)	KMnO_4		(A)	Alcohol
(D)	DIBAL-H		(B)	Aldehyde
Which part of the epoxide is attacked			(C)	Alkane
by LiAlH4 during reduction?			(D)	Ketone
(A)	Less substituted carbon	76.	In a	rearrangement reaction, the
(B)	More substituted carbon		migra	ating group typically moves from:
(C)	Oxygen atom		(A)	One molecule to another
(D)	Both ends equally		(B)	A functional group to a solvent
Whic	ch reducing agent does not		(C)	One atom to another within the
typica	ally reduce esters or acids?			same molecule
(A)	NaBH ₄		(D)	A carbon to a metal catalyst
(B)	LiAlH ₄	77.	Migr	atory aptitude refers to:
(C)	Red-Al		(A)	Stability of leaving group
(D)	DIBAL-H		(B)	Tendency of a group to undergo
Red-	Al (sodium bis(2-			elimination
metho	oxyethoxy)aluminum hydride) is		(C)	Ability of a group to migrate
stron	ger than:			during rearrangement
(A)	NaBH ₄		(D)	Rate of hydrolysis
001T-A	/100 (1	1)		[P.T.O.]
	hydro (A) (B) (C) (D) Whice epox condi (A) (B) (C) (D) Whice by Li (A) (B) (C) (D) Whice typical (A) (B) (C) (D) Red- methological (A)	hydrogenolysis of esters to alcohols? (A) H ₂ /Pd under high pressure (B) NaBH ₄ in methanol (C) PCC in CH ₂ Cl ₂ (D) Na/NH ₃ Which reagent selectively reduces epoxides to alcohols under basic conditions? (A) PCC (B) LiAlH ₄ (C) KMnO ₄ (D) DIBAL-H Which part of the epoxide is attacked by LiAlH4 during reduction? (A) Less substituted carbon (B) More substituted carbon (C) Oxygen atom (D) Both ends equally Which reducing agent does not typically reduce esters or acids? (A) NaBH ₄ (B) LiAlH ₄ (C) Red-Al (D) DIBAL-H Red-Al (sodium bis(2-methoxyethoxy)aluminum hydride) is stronger than: (A) NaBH ₄	(A) H ₂ /Pd under high pressure (B) NaBH ₄ in methanol 74. (C) PCC in CH ₂ Cl ₂ (D) Na/NH ₃ Which reagent selectively reduces epoxides to alcohols under basic conditions? (A) PCC 75. (B) LiAlH ₄ (C) KMnO ₄ (D) DIBAL-H Which part of the epoxide is attacked by LiAlH4 during reduction? (A) Less substituted carbon (C) Oxygen atom (D) Both ends equally Which reducing agent does not typically reduce esters or acids? (A) NaBH ₄ (B) LiAlH ₄ (C) Red-Al (D) DIBAL-H Red-Al (sodium bis(2-methoxyethoxy)aluminum hydride) is stronger than: (A) NaBH ₄	hydrogenolysis of esters to alcohols? (A) H ₂ /Pd under high pressure (B) NaBH ₄ in methanol (C) PCC in CH ₂ Cl ₂ (D) Na/NH ₃ (A) Which reagent selectively reduces epoxides to alcohols under basic conditions? (D) (A) PCC (B) LiAlH ₄ (C) KMnO ₄ (D) DIBAL-H (C) Which part of the epoxide is attacked by LiAlH4 during reduction? (A) Less substituted carbon (B) More substituted carbon (C) Oxygen atom (D) Both ends equally (C) Red-Al (D) DIBAL-H (D) DIBAL-H (E) Which reducing agent does not typically reduce esters or acids? (A) NaBH ₄ (B) LiAlH ₄ (C) Red-Al (C) Red

78.	aptitude is:			pinacolone is induced by:		
	(A)	$H \le Ph \le Alkyl$		(A)	Base	
	(B)	H>Aryl>Alkyl		(B)	Acid	
	(C)	Alkyl>H>Aryl		(C)	Light	
	(D)	Aryl > Alkyl > H		(D)	Oxidant	
79.	Which effect refers to the preference for a group to migrate based on its original orientation?				the Wagner-Meerwein angement, the driving force is:	
	(A)		(A)	Formation of a more stable carbocation		
	(B)	Memory effect		(B)	Reduction of carbonyl group	
	(C)	Hyperconjugation		(C)	Intramolecular hydrogen	
	(D)	Anchimeric assistance			bonding	
80.	The	Pinacol-Pinacolone	e	(D)	Loss of water	
	rearra	angement involves:	84.	Wagner–Meerwein rearrangement is typically seen in:		
	(A)	Alkene formation				
	(B)	Ketone to alcohol conversion	Į.	(A)	Aldehydes	
	(C)	Diol to ketone rearrangement		(B)	Alkenes	
	(D)	Amide to amine conversion		(C)	Alcohols under acidic conditions	
81.		e Pinacol rearrangement, which mediate is formed first?	1	(D)	Amines under basic conditions	
	(A)	Carbene	85.		Demjanov rearrangement involves ion of amines with:	
	(B)	Carbocation		(A)	Sulfuric acid	
	(C)	Enolate		(B)	Nitrous acid	
	(D)	Epoxide		(C)	KMnO ₄	
				(D)	NaBH ₄	
B021	001T-A	/100 (12)			

86.	In the Demjanov rearrangement, the key intermediate is:		90.	The migrating group in the Beckmann rearrangement is:		
	(A)	Carbocation		(A)	Anti to –OH group	
	(B)	Nitrene		(B)	Syn to –OH group	
	(C)	Free radical		(C)	Random	
	(D)	Carbene		(D)	Always phenyl	
87.		il—Benzilic acid rearrangement ves migration of:	91.		ch acid is typically used in mann rearrangement?	
	(A)	Alkyl group		(A)	Nitric acid	
	(B)	Aryl group		(B)	Sulfuric acid	
	(C)	Carbonyl group		(C)	Acetic acid	
	(D)	Carboxyl group		(D)	Chromic acid	
88.		The Benzilic acid rearrangement is base-catalyzed and proceeds via:		Hofn	nann rearrangement transforms:	
	(A)	Carbanion intermediate		(A)	Aldehyde to acid	
	(B)	Carbocation intermediate		(B)	Ketone to amide	
	(C)	Nitrene intermediate		(C)	Amide to amine	
	(D)	Radical intermediate		(D)	Acid to alcohol	
89.	The	Beckmann rearrangement erts:	93.		Hofmann rearrangement involves ation of:	
	(A)	Alcohol to ketone		(A)	Isocyanate intermediate	
	(B)	Oxime to amide		(B)	Oxonium ion	
	(C)	Ketone to oxime		(C)	Carbene	
	(D)	Amide to amine		(D)	Alkene	
B021001T-A/100		/100 (1	13)		[P.T.O.]	

94.	In Curtius rearrangement, the starting compound is:			(C)	HCl
		Amide		(D)	Hydrazoic acid
	(A)	Amide	98.	Produ	act of Schmidt rearrangement of
	(B)	Carboxylic acid		a cart	poxylic acid is:
	(C)	Acid chloride		(A)	Alcohol
	(D)	Acyl azide		(B)	Aldehyde
95.	Curtiu	us rearrangement gives:		(C)	Ketone
	(A)	Alcohol		(D)	Amine
	(B)	Aldehyde	99.	Baey	ver-Villiger rearrangement
	(C)	Amine		transf	forms a ketone into a(n):
	(D)	Ether		(A)	Amine
96.		earrangement step in the Curtius		(B)	Ester
	rearra	ngement proceeds via:		(C)	Alcohol
	(A)	Radical		(D)	Nitrile
	(B)	Nitrene		, ,	
	(C)	Carbocation	100.		eyer-Villiger rearrangement, the ating group is:
	(D)	Carbanion		(A)	From the more hindered side
97.		on of carboxylic acids or ketones		(B)	The group with better migratory aptitude
	(A)	Hydrazine		(C)	Always phenyl
	(B)	HNO ₃		(D)	Random
B0210	001T-A/	(100	14)		

ROUGH WORK

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।