Roll. No	Question Booklet Number	
O.M.R. Serial No.		

M.Sc. (SEM.-III) (NEP) (SUPPLE.)EXAMINATION, 2024-25 CHEMISTRY

(Bioinorganic, Bio-organic, Bio-Physical Chemistry)

	I	Pap	er	C	od	e	
В	0	2	0	9	0	1	T

Time: 1:30 Hours

Question Booklet Series

A

Max. Marks: 75

Instructions to the Examinee :

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- Examine the Booklet and the OMR
 Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.
- 4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the correct / answer and mark the same in the OMR Answer-Sheet as per the direction:

(Remaining instructions on last page)

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, उसे तुरन्त बदल लें।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर- A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

(शेष निर्देश अन्तिम पृष्ठ पर)

1.	When iron stores are exhausted from body the disease which occurs in				Which metal works as a catalyst for nitrogen fixing bacteria?		
	human is:			(A)	Cr		
	(A)	Renal failure		(B)	Zn		
	(B)	Heart attack		(C)	Mo		
	(C)	Anemia		(D)	Mg		
	(D)	Eye disease		Нурс	onatremia is caused by low levels		
2.	In pla	ce of Zn body may use:		ofwh	nich metal?		
	(A)	Fe		(A)	Na		
	(B)	Cu		(B)	K		
	(C)	Mg		(C)	Zn		
	(D)	Co		(D)	Cu		
3.	For sense of smell and taste which metal is responsible?				Excess of which metal causes Wilson's disease?		
	(A)	Ag		(A)	Zn		
	(B)	Zn		(B)	Cu		
	(C)	Cr		(C)	V		
	(D)	Cu		(D)	Na		
4.		h state of chromium nogenic?	is 8.	Whio disea	ch metal causes Minamata se?		
	(A)	0		(A)	Hg		
	(B)	+1		(B)	Cu		
	(C)	+3		(C)	Zn		
	(D)	+6		(D)	Al		
B0209	901T-A/	/60	(3)		[P.T.O.]		

9.	Light harvesting complex is subunit of: 13.				How much ATP does Sodium-		
	(A)	Carbohydrate complex		Potas	sium pump consume?		
	(B)	Fat complex		(A)	Three fourth		
	(C)	Protein complex		(B)	One fourth		
	(D)	None of these		(C)	One third		
10.	` ′			(D)	Half		
10.		and yellow colour if fruits and ers is due to:	14.		h elements compounds are used eating disorders?		
	(A)	Carotenoids		(A)	Nitrogen		
	(B)	Alkaloids		(B)	Lithium		
	(C)	Terpens		(C)	Sodium		
	(D)	None of these		(D)	Potassium		
11.	Calm	odulin contains:	15.	Whic	h of the following is not treated		
	(A)	Ca		using higher levels of Potassium?			
	(B)	Si		(A)	Cold		
	(C)	Both Ca and Si		(B)	Hypokalemia		
	(D)	None of these		(C)	Muscle contraction		
12.	Whic	h of the following metal helps to		(D)	Respiratory paralysis		
	transr	mit nerve signals?	16.		otassium bicarbonate be used as		
	(A)	Hydrogen		an ant			
	(B)	Potassium		(A)	Yes		
	(C)	Sodium		(B)	No		
	(D)	Lithium		(C)	May be		
	` /			(D)	May not be		

- 17. Which of the following metal readily reacts with skin moisture to form rubidium hydroxide?
 - (A) Lithium
 - (B) Rubidium
 - (C) Sodium
 - (D) Potassium
- 18. Potassium ions act as cofactors for certain enzymes such as:
 - (A) Pyruvate kinase
 - (B) Photosynthesis
 - (C) Proteins kinase
 - (D) None of these
- 19. Chlorophylls are soluble in:
 - (A) Organic solvents
 - (B) Inorganic solvents
 - (C) Organic solutes
 - (D) Inorganic solutes
- 20. A compound which is found in all living cells and play a key role in energy transformation is:
 - (A) ADP
 - (B) ATP
 - (C) Chlorophyll
 - (D) Granum

- 21. Photosynthesis is process in which inorganic compounds are reduced to organic compounds using:
 - (A) Heat energy
 - (B) Light energy
 - (C) Chemical energy
 - (D) Electrical energy
- 22. Summarized details of dark reactions are also known as:
 - (A) Daniel cycle
 - (B) Ernst cycle
 - (C) Calvin cycle
 - (D) Karl cycle
- 23. Rate of photosynthesis increase with the :
 - (A) Increase in hydrogen
 - (B) Increase in nitrogen
 - (C) Increase in CO₂
 - (D) Increase in O₂
- 24. In anaerobic respiration, Pyruvic acid is not oxidised completely and turns into:
 - (A) Ethane
 - (B) Methyl Alcohol
 - (C) Mathane
 - (D) Ethyl Alcohol

25.	Cellular respiration is a/an process.			If enthalpy change for a reaction is zero the ΔG^o equals to :		
	(A)	Oxidation		(A)	$-T\Delta S^{o}$	
	(B)	Reduction		(B)	$T\Delta S^{o}$	
	(C)	Redox		(C)	$-\Delta \mathrm{H}^{\mathrm{o}}$	
	(D)	None of these		(D)	ℓn K eq.	
26.	ATPa	re consumed during:	30.	What	is the heating value of 10 kg of	
	(A)	Glycolysis			coal with heat of combustion	
	(B)	Kreb's cycle		10 J/Kg?		
	(C)	Light dependent phase		(A)	-10J	
	(D)	None of these		(B)	10J	
27.	From	one Pyruvated passing through	31.	(C)	-100J	
	Kreb's forme	s cycle, how many NADH are		(D)	100J	
	(A)	1		A nucleoside is composed of:		
	(B)	2		(A)	A base + sugar	
	(C)	3		(B)	A base + a phosphate	
	(D)	4		(C)	A base + a sugar + phosphate	
28.	Final	acceptor of electrons in		(D)	None of these	
	respir	atory chains is:	32.	Gene	tic mutation occurs in:	
	(A)	NADH		(A)	Protein	
	(B)	Cytochrome a ³		(B)	RNA	
	(C)	Water		(C)	DNA	
	(D)	Oxygen		(D)	Nucleus	

- 33. DNA is present in:
 - (A) Nucleus only
 - (B) Nucleus mitochondria and RER
 - (C) Nucleus mitochondria and Er
 - (D) Nucleus mitochondria and Chloroplast
- 34. DNA is genetic meterial in:
 - (A) Viruses, Prokaryote and Eukaryote
 - (B) Prokaryote and Eukaryote
 - (C) Only in Eukaryote
 - (D) In same viruses, Prokaryotes and eukaryotes
- 35. Chromatin is composed of:
 - (A) Nucleic acid and protein
 - (B) Nucleic acid only
 - (C) Proteins only
 - (D) None of these
- 36. Adjacent nucleotides are joined by:
 - (A) Covalent bond
 - (B) Phosphodiester bond
 - (C) Ionic bond
 - (D) Peptide bond

- 37. Function of nucleotide includes:
 - (A) Information storage and transmission
 - (B) Storage of chemical energy
 - (C) Cell signalling
 - (D) All of the above
- 38. Choose the best option:
 - (A) Protein has catalytic activity
 - (B) Proteins and RNA have catalytic activity
 - (C) Proteins, RNA and antibodies have catalytic activity
 - (D) Proteins, RNA antibodies and phospholipids have catalytic activity
- 39. The back bone of DNA is:
 - (A) Hydrophilic
 - (B) Hydrophobic
 - (C) Neutral
 - (D) Both (A) and (B)
- 40. Which is the most stable from of DNA under normal physiological conditions?
 - (A) A-DNA
 - (B) B-DNA
 - (C) Z-DNA
 - (D) H-DNA

41.	RNA-DNA hybrides are:			The structure of myoglobin is:			
	(A)	More stable than DNA-DNA hybrid		(A)	Tetrahedral		
	(B)	More stable than RNA-RNA		(B)	Octahedral		
		hybrid		(C)	Globular		
	(C)	Less stable than RNA-RNA hybrid	46.	(D)	None of these		
	(D)	Less stable than RNA-RNA		Myog	Myoglobin is:		
		hybrid and DNA-DNA hybrid		(A)	Blue protein		
42.		in makes nearly:		(B)	Red protein		
	(A) (B)	40% of RBC dry content 10% of total content	47.	(C)	Green protein		
	(C)	80% of RBC dry content		(D)	None of these		
	(D)	96% of RBC dry content		Stron	Strongest antigens is:		
43.		increase in H ⁺ ion concentration nding of oxygen to haemoglobin:		(A)	Rubredoxin		
	(A)	Decreases		(B)	Ferridoxin		
	(B)	Increases	48.	(C)	Hemocynin		
	(C)	Remains same		(D)	Hemercythrin		
	(D)	None of these		Anox	xyhemerythrin the oxidation state		
44.		ruminous plants red colour inside		of Fe			
		odules is due to :		(A)	0		
	(A)	Leghaemoglobin		(B)	+1		
	(B)	Myoglobin		(D)			
	(C)	Hemocyanin		(C)	+2		
	(D) Vasks complex			(D)	+3		

49.	Enzymes are:		53.	The enzymes involved in feedback inhibition are called:		
	(A)	Carbohydrate		(A)	Allosteric enzymes	
	(B)	RNA		(B)	Holoenzymes	
	(C)	Proteins		(C)	Apoenzymes	
	(D)	Fats		(D)	Co-enzymes	
50.	The te	erm Enzymes is coined by :	54.	Whic	h of the following is not a	
	(A)	Pasteur		catalytic strategy for an enzyme to perform specific reaction?		
	(B)	Buchner		(A)	Covalent catalysis	
	(C)	Urey Miller		(B)	Metal ion catalysis	
	(D)	Kuhne		(C)	Michaelis constant	
51.	The fa	astest enzyme is:		(D)	Acid-Base catalysis	
	(A)	Pepsin	55.	Who proposed "lock and key" model to study enzyme substrate interaction?		
	(B)	Carbonic unhydrase		(A)	Koshland	
	(C)	DNA gyrase		(B)	Wilhelm Kuhne	
	(D)	DNA polymers		(C)	Fischer	
52.	Catalysts are different from enzymes			(D)	None of these	
V = .	in:	, 5 10 11 10 11 11 11 11 11 11 11 11 11 11	56.	An inhibitor that changes the over all		
	(A)	Functional at high temperature		shape and chemistry of an enzyme i known as:		
	(B)	Not used up in reaction		(A)	Autosteric inhibitor	
	(C)	Being proteinaceous		(B)	Comptitive inhibitor	
	(D) Having high rate diffusion			(C)	Steric inhibitor	
				(D)	Non comptitive inhibitor	

57.	Whic	h one is not attribute of enzyme?	61.		covalent bond formed during ent catalysis is usually:
	(A)	Specific in nature			
	(B)	Protein in chemistry		(A)	A peptide bond
	(C)	Consumed in reaction		(B)	A disulphide bond
	(D)	Increase rate of reaction		(C)	A phosphodiester bond
7 0	, ,			(D)	An ester bond
58.		ovalent catalysis is aided by one following method:	62.		h of the following metal ion is nonly involved in the catalytic
	(A)	General acid-base catalysis		activi	ty of ribonucleate?
	(B)	Specific acid-base catalysis		(A)	Ca ⁺⁺
	(C)	Nucleophilic catalysis		(B)	Mg ⁺⁺
	(D)	Substrate collision theory		(C)	Na ⁺
59.	Tryps	in are active in :		(D)	K ⁺
	(A)	Acidic	63.	-	notrypsin belongs to which class zymes?
	(B)	Alkaline		(A)	Oxidoreductases
	(C)	Neutral		(B)	Transferases
	(D)	None of these		(C)	Hydrolases
60.	Shape	e of active sites are determined		(D)	Lyases
	by:		64.	Acid-	Base catalysis can be influenced
	(A)	Naturation of enzymes		by ch	anges in the:
	(B)	Specificity of enzymes		(A)	pH of the reaction medium
	(C)	Viscosity of enzymes		(B)	Temperature of the reaction
	(D)	Saturation of enzymes		(C)	Concentration of the enzymes
				(D)	Size of substrate molecule

(10)

B020901T-A/60

65. The term Apoenzyme is applicable to: 69. Vitamin B12 functions as a coenzyme for enzymes involved in: Simple enzyme (A) (A) Synthesis of DNA (B) Protein part of conjugate enzyme Breakdown of carbohydrates (B) Organic co-factor of a (C) (C) Methionine synthase conjugate enzyme (D) Alpha-Amylase Lowest requirement (D) of 70. Vitamin B12 acts as a cofactor for the activation energy enzyme called: 66. The Coenzyme is: Pyruvate dehydragenase (A) Often a metal (A) Citrate synthase (B) (B) Always a protein Production of ATP (C) (C) Often a vitamin (D) Metabolism of fatty acids (D) Always a inorganic compound 71. NAD⁺ (Nicotinamide Adenine 67. Which of the following is produced Dinucleotide) functions as a coenzyme with the combination of apoenzyme in reaction involved in: and coenzyme? Oxidation-reduction reactions (A) (A) Haloenzyme Carboxylation reactions (B) (B) Enzyme substrate complex (C) Phosphorylation reactions (C) Prosthetic group (D) Enzyme product complex (D) Acetylation reactions 68. Zymogen or Proenzyme is a: 72. NAD⁺ reduced to NADH by accepting: (A) Modulator (A) An electron Vitamin (B) (B) A proton (C) Enzyme precursor (C) A phosphate group (D) Hormone

(D)

A methyl group

73.	FMN	FMN (Flavin Mononucleotide) and		Which of the following is not a		
	FAD	(Flavin Adenine Dinucleotide) are		requirement for protein synthesis?		
	coen	zymes that contains:		(A)	Ribosomes	
	(A) Ribose sugar			(B)	Peptidyl transfrase	
	(B)	Adenine base		(C)	Spliceosome	
	(C)	Flavin mononucleotide		(D)	Amino acetyl tRNA synthetase	
	(D)	Flavin adenine phosphate	79.	The a	amino acids are assembled into	
74.	The o	oxidised form of FMN is called:		polyp	peptide chains on:	
	(A)	FMNH ₂		(A)	m-RNA	
	(B)	FADH ₂		(B)	Nucleus	
	(C)	FMN ⁺		(C)	Ribosome	
	(D)	FAD ⁺		(D)	DNA template	
75.	NAD	OH and FADH ₂ generated during	80.	Fat is	Fat is hydrolysed by the enzyme known	
	cellu	lar respiration serve as electron		as:		
	carrie	ers in :		(A)	Trypsin	
	(A)	(A) Glycolysis		(B)	Lipase	
	(B)) Citric acid cycle		(C)	Pepsin	
	(C)	Electron trasport chain		(D)	Amylase	
	(D)	Photosynthesis	81.	Enzy	me:	
76.	Whi	ch of the following is not a		(A)	do not require activation	
	coenz	zyme?			energy	
	(A)	NAD ⁺		(B)	do not change requirement of	
	(B)	ATP			a activation enzyme	
	(C)	CoenzymeA		(C)	Increase requirement of	
	(D)	FAD			activation energy	
77.	Cofa	ctors can be divided into two		(D)	Lowest requirement of	
	majo	r groups: Metal ions and			activation energy	
	(A)	Coenzymes	82.	Enzy	mes are basically made up of:	
	(B)	(B) Inhibitors(C) Substrates(D) Activators		(A)	Fats	
	(C)			(B)	Proteins	
	(D)			(C)	Nucleic acids	
				(D)	Vitamins	

83.	Break	king of terminal phosphate of ATP		(C)	No change in the entropy of		
	releas	releases about K cal energy.			protein		
	(A)	(A) 6.1		(D)	Large increase in the entropy		
	(B)	6.3			of protein		
	(C)	7.1	88.	Exer	gonic reaction in bioenergetics:		
	(D)	7.3		(A)	Require energy input		
84.		are consumed during:		(B)	Release energy		
	(A) Glycolysis			(C)	Convert energy input		
	(B)	B) Kreb's cycle		(D)	Convert energy from work to		
	` ′				heat		
	(C)	Light dependent phase	89.	The	coupling of exergonic and		
0.7	(D)			ende	endergonic reactions in bioenergetics		
85.		one pyruvated passing through		is mediated by:			
		's cycle, how many NADH are		(A)	Enzymes		
		formed?		(B)	Coenzymes		
	(A)	1		(C)	ATP		
	(B)	2		(D)	Water molecules		
	(C)	3	90.	In bi	opolymers solutions, entropy is		
	(D)	4		typic	ally related to:		
86.	Fina	l acceptor of electrons in		(A)	Polymer chain flexibility		
	respi	ratory chain is:		(B)	Polymer chain rigidity		
	(A)	NADH		(C)	Polymer chain length		
	(B)	Cytochrome		(D)	Polymer chain branching		
	(C)	Water	91.	Osmo	otic pressure is a measure of:		
	(D)	Oxygen		(A)	The concentration of solute		
87.	, ,	lding of regular secondry protein			molecules in a solution		
07.		ture causes:		(B)	The rate of diffusion of solute		
					molecules		
	(A)	Large decrease in the entropy		(C)	The pressure required to stop		
	(D)	of the protein			Osmosis		
	(B)	Little increase in the entropy		(D)	The temperature of the		
		of the protein			solutions		

(13)

[P.T.O.]

B020901T-A/60

- 92. In the context of bipolymer solutions
 Osmotic pressure is influenced by:
 - (A) Polymer chain length
 - (B) Polymer concentration
 - (C) Solvent properties
 - (D) All of the above
- 93. The Osmotic pressure of a biopolymer solution can be used to determine:
 - (A) The molar mass of the biopolymer
 - (B) The molecular structure of the biopolymer
 - (C) The degree of polymerization of biopolymer
 - (D) The solubility of biopolymer
- 94. Osmotic pressure is important parameter in studing:
 - (A) Protein folding
 - (B) Polymerization reactions
 - (C) Membrane transport
 - (D) Enzyme kinetics
- 95. The driving force for biopolymer transport across a membrane is typically:
 - (A) Thermal energy
 - (B) Osmotic pressure
 - (C) Concentration gradient
 - (D) Hydrostatic pressure

- 96. The rate of biopolymer diffusion across the membrane is influenced by:
 - (A) Temperature
 - (B) Membrane viscosity
 - (C) Molecular weight of biopolymer
 - (D) All of the above
- 97. Membrane equilibrium in biopolymer solutions can be disrupted by :
 - (A) Temperature change
 - (B) pH change
 - (C) Alterations in ionic strength
 - (D) All of the above
- 98. Mechaho chemical systems are useful in :
 - (A) Modification of biopolymer properties
 - (B) Biopolymer synthesis
 - (C) Biopolymer degradation
 - (D) All of the above
- 99. The energy input in mechaho chemical systems in biopolymer solutions primarily comes from:
 - (A) Thermal energy
 - (B) Mechanical energy
 - (C) Chemical energy
 - (D) Electrochemical energy
- 100. Acid-Base catalysis is an example of:
 - (A) Covalent catalysis
 - (B) Metal ion catalysis
 - (C) Electrostatic catalysis
 - (D) None of these

Rough Work

Example:

Question:

- Q.1 **A © D**
- Q.2 **A B O**
- Q.3 (A) (C) (D)
- Each question carries equal marks.
 Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer Sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination, candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager & cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is any discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

उदाहरण :

प्रश्न :

प्रश्न 1 (A) ● (C) (D)

प्रश्न 2 (A) (B) ■ (D)

प्रश्न 3 **A ● C D**

- प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ०एम०आर० उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ॰एम॰आर॰ उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- परीक्षा-कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्णः प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।