Roll No	 ••••				Question Booklet Number
O. M. R. Serial No.					

M. Sc. (Ag.) Genetics and Plant Breeding (Third Semester) EXAMINATION, 2021-22

BIOTECHNOLOGY FOR CROP IMPROVEMENT

Paper Code					
GP	5	0	0	9	

Questions Booklet Series

D

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 60 questions. Examinee is required to answer any 50 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 50 questions are attempted by student, then the first attempted 50 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 60 प्रश्न हैं। परीक्षार्थी को किन्हीं 50 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 50 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 50 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

1.	Golden rice is rich in:	5.	GMOs stands for:
	(A) Vitamin D		(A) Generally Modified Organisms
	(B) Vitamin A		(B) Genetically Modified Organisms
	(C) Vitamin B		(C) Both (A) and (B)
	(D) Vitamin C		(D) None of the above
2.	Flaur saur is the transgenic variety of:	6.	Simultaneous introduction of multiple
	(A) Potato		genes into a genotype is called as:
	(B) Tobacco		(A) Multiple gene introduction
	(C) Tomato		(B) Gene pyramiding
	(D) Brinjal		(C) Gene upgradation
3.	Male sterility in rape seed is transferred		(D) All of the above
	from:	7.	Suitable temperature for incubation is :
	(A) Haemophilus influenzae		(A) 28°C± 2
	(B) Agrobacterium rhizogens		(B) 45°C± 2
	(C) Bacillus thuringiensis		(C) 25°C± 2
	(D) Bacillus amyloliquefaciens		
4.	The crops engineered for glyphosate are		(D) $60^{\circ}C^{\pm} 2$
	resistant to:	8.	Tetracyclin is a:
	(A) Herbicides		(A) Selectable marker
	(B) Bactericides		(B) Scorable marker
	(C) Fungicides		(C) Both (A) and (B)
	(D) Insecticides		(D) None of the above

(3)

Set-D

9.	Enzy	yme used in PCR:	12.	Wha	t is true about genomics?
	(A)	Ligase		(A)	Gemomics is the study of genomes
	(B)	Nuclease			or the complete set of genetic
	(C)	Ribonuclease			material of an organism.
	(D)	Taq polymerase		(B)	Genomics introduced by Tom
					Roderick.
10.	Callı	us is :		(C)	Genomics is the study of heredity.
	(A)	Unorganized mass of cells		(D)	Both (A) and (B)
	(B)	Organized mass of cells	13.	Opin	nes are :
	(C)	Organized mass of tissue		(A)	Amino acids
	(D)	All of the above		(B)	Lipids
11.	The	process of determining the		(C)	Proteins
	orde	r of nucleotides in DNA, is called		(D)	Nucleic acid
	as:		14.	PCR	was invented by :
	(A)	Genotyping		(A)	Kornberg
	(B)	DNA sequencing		(B)	Larkin
	(C)	Phenotyping		(C)	Kary Mullis
	(D)	Gene pyramiding		(D)	Nitch

(4)

Set-D

cell growth is: (A) 5.5-5.8 (B) 3.5-4.5 (C) 7.5-8.5 (C) 7.5-8.5 (D) 8.5-9.5 (D) All of the above 19. Which of the following chemicals is used for the weakening of the cell wall of bacteria? (A) Isopropanol (B) Lysozyme (C) Restriction enzyme (D) All of the above 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-II (C) Type-III (C) Ribonuclease (D) None of the above (D) SDS	15.	The pH of nutrient medium suitable for	18.	Restriction endonuclease is also known			
(B) 3.5-4.5 (C) 7.5-8.5 (D) 8.5-9.5 (D) 8.5-9.5 (D) 8.5-9.5 (D) All of the above 19. Which of the following chemicals is used for the weakening of the cell wall of bacteria? (A) W. Arber (B) O. Smith (C) Nathans (D) All of the above 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-II (C) Type-III (C) Ribonuclease (C) Ribonuclease (C) Ribonuclease		cell growth is:		as:			
(C) 7.5-8.5 (D) 8.5-9.5 (D) All of the above 19. Which of the following chemicals is used for the weakening of the cell wall of bacteria? (A) W. Arber (B) O. Smith (C) Nathans (D) All of the above 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-II (C) Ribonuclease		(A) 5.5-5.8		(A) Restriction enzyme			
(C) 7.5-8.5 (D) 8.5-9.5 (D) All of the above 16. Restriction endonuclease enzymes were discovered by: (A) W. Arber (B) O. Smith (C) Nathans (D) All of the above 17. Which of the following chemicals is used for the weakening of the cell wall of bacteria? (A) Isopropanol (B) Lysozyme (C) Restriction enzyme (D) Ribonuclease 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-II (C) Type-III (C) Ribonuclease (C) Ribonuclease		(B) 3.5-4.5		(B) Molecular knives			
(D) 8.5-9.5 16. Restriction endonuclease enzymes were discovered by: (A) W. Arber (B) O. Smith (C) Nathans (D) All of the above 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-II (C) Type-III (B) Which of the following chemicals is used for the weakening of the cell wall of bacteria? (A) Isopropanol (B) Lysozyme (C) Restriction enzyme (D) Ribonuclease 20. Which enzyme degrades RNA in a solution? (A) Proteinase K (B) Deoxyribonuclease (C) Ribonuclease		(C) 7.5-8.5		(C) Molecular scissors			
discovered by: (A) W. Arber (B) O. Smith (C) Nathans (D) All of the above Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-II (C) Type-III (C) Restriction enzymes were for the weakening of the cell wall of bacteria? (A) Isopropanol (B) Lysozyme (C) Restriction enzyme (D) Ribonuclease 20. Which enzyme degrades RNA in a solution? (A) Proteinase K (B) Deoxyribonuclease (C) Ribonuclease		(D) 8.5-9.5		(D) All of the above			
discovered by: (A) W. Arber (B) O. Smith (C) Nathans (D) All of the above (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (E) Restriction enzyme (D) Ribonuclease (E) Restriction enzyme (D) Ribonuclease (E) Ribonuclease (E) Type-II (E) Deoxyribonuclease (C) Ribonuclease (C) Ribonuclease	16.	Restriction endonuclease enzymes were	19.	Which of the following chemicals is used			
(A) W. Arber (B) O. Smith (C) Nathans (D) All of the above (C) Restriction enzyme (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (E) Restriction enzyme (D) Ribonuclease (E) Restriction enzyme (D) Ribonuclease (E) Ribonuclease (E) Type-II (E) Deoxyribonuclease (C) Type-III (C) Ribonuclease		discovered by:		for the weakening of the cell wall of			
(B) O. Smith (C) Nathans (D) All of the above (C) Restriction enzyme (D) Ribonuclease 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Lysozyme (C) Restriction enzyme (D) Ribonuclease 20. Which enzyme degrades RNA in a solution? (A) Proteinase K (B) Type-II (C) Ribonuclease (C) Ribonuclease		(A) W. Arber		bacteria ?			
(C) Nathans (D) All of the above (C) Restriction enzyme (D) Ribonuclease 17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-I (C) Restriction enzyme (D) Ribonuclease 20. Which enzyme degrades RNA in a solution? (A) Proteinase K (B) Deoxyribonuclease (C) Type-III (C) Ribonuclease		(B) O. Smith		(A) Isopropanol			
(D) All of the above (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (D) Ribonuclease (E) Type-II (D) Ribonuclease (D) Ribonuclease (E) Type-II (D) Ribonuclease (E) Ribonuclease (C) Type-III (D) Ribonuclease (C) Ribonuclease (D) Ribonuclease (C) Ribonuclease (C) Ribonuclease		(C) Nathans		(B) Lysozyme			
17. Which type of restriction enzymes are generally used in gene cloning and restriction mapping? (A) Type-II (B) Type-I (C) Type-III (C) Ribonuclease		(D) All of the above		(C) Restriction enzyme			
restriction mapping? (A) Type-II (B) Type-II (C) Type-III (C) Ribonuclease	17.	Which type of restriction enzymes are		(D) Ribonuclease			
(A) Type-II (A) Proteinase K (B) Type-I (B) Deoxyribonuclease (C) Type-III (C) Ribonuclease		generally used in gene cloning and	20.	Which enzyme degrades RNA in a			
(B) Type-II (B) Deoxyribonuclease (C) Type-III (C) Ribonuclease		restriction mapping ?		solution ?			
(C) Type-III (C) Ribonuclease		(A) Type-II		(A) Proteinase K			
		(B) Type-I		(B) Deoxyribonuclease			
(D) None of the above (D) SDS		(C) Type-III		(C) Ribonuclease			
		(D) None of the above		(D) SDS			

(5)

Set-D

21.	Ultraviolet absorbance can be used to	24.	Which one of the following increase
	check:		the uptake of DNA molecule by E. coli
	(A) Purity of DNA in a sample		cells?
	(B) Quantity of DNA in a sample		(A) NH ₄ Cl
	(C) Both (A) and (B)		(B) CaCl ₂
	(D) None of the above		(C) NH ₄ OH
22.	Enzymes used for joining two DNA		(D) NaOH
	molecules are :	25.	Which one of the following is known as
	(A) Nucleases		nature's smallest genetic engineer?
	(B) Polymerases		(A) Yeast
	(C) Topoisomerases		(B) Agrobacterium tumefaciens
	(D) Ligases		(C) E. coli
23.	The process of joining together of the		(D) Viruses
	vector molecule and desired DNA	26.	Crown gall disease in many species of
	molecule is called as:		dicotyledonous plants is caused by:
	(A) Ligation		(A) Agrobacterium rhizogens
	(B) Methylation		(B) Neurospora crassa
	(C) Splicing		(C) Agrobacterium tumefaciens
	(D) None of the above		(D) Saccharomyces cerevisiae

(6)

Set-D

GP-5	009	(7)			Set-D
	(D)	None of the above		(D)	Respiration
	(C)	Southern blotting		(C)	Fruit ripening
	(B)	Northern blotting		(B)	Photosynthesis
	(A)	Western blotting		(A)	Flowering in plant
	achie	eved by :		toma	nto, slows down the process of:
	withi	in a recombinant DNA molecule is	34.	Вуч	using antisense RNA technology in
30.	To lo	ocate exact position of a cloned gene		(D)	Nematodes
	(D)	Complex DNA		(C)	Virus
	(C)	Complementary DNA		(B)	Bacteria
	(B)	Complete DNA		(A)	Fungi
<i></i> .	(A)	Circular DNA	33.	In B	t cotton, Bt is related to:
29.	In cT	DNA 'c' stands for :		(D)	110°C
	(D)	Pepper mild mottle virus		(C)	94°C
	(C)	Leaf curl virus		(B)	100°C
	(A) (B)	Caulimovirus		(A)	90°C
	DNA (A)	virus ? TMV	32.	Usua	ally the denaturation temperature is:
28.		ch of the following is an example of			
20	, ,			(D)	Watson and Crick
	(D)	Proteus vulgaris		(C)	Messelson and Stahl
	(C)	Bacillus globigii		(B)	A. Maxam and W. Gilbert
	(B)	Escherichia coli		(A)	F. Sanger and A. R. Coulson

31.

The chain termination method of DNA

sequencing was given by:

Ti plasmid is found in:

(A) Agrobacterium tumefaciens

27.

35.	Plan	t Biotechnology involves :	38.	Gene	erally	virus	free	plants	can	be
	(A)	Production of valuable products in		obtai	ned th	rough :				
		plants		(A)	Embi	ryo cult	ure			
	(B)	Rapid clonal multiplication		(B)	Ovul	e cultui	re			
	(C)	Production of virus free plants		(C)	Anth	er cultu	ıre			
	(D)	All of the above		(D)	Meris	stem cu	ılture			
36.	The	most common solidifying agent used	39.	Varia	ation f	ound in	ı <i>in vii</i>	<i>ro</i> cultu	red tis	ssue
	in m	icropropagation is :		is cal	lled as	:				
	(A)	Dextran		(A)	Game	etoclon	al vari	ation		
	(B)	Agar		(B)	Soma	aclonal	variati	ion		
	(C)	Mannon		, ,						
	(D)	Sorbitol		(C)	Envii	ronmen	tal vai	riation		
27	Cult	uring cells in agited liquid medium is		(D)	None	of the	above			
57.	calle		40.	Hapl	oid pla	ants are	produ	iced by	:	
	(A)	Liquid culture		(A)	Meris	stem cu	ılture			
	(B)	Agar culture		(B)	Nuce	llus cul	lture			
	(C)	Suspension culture		(C)	Embi	ryo cult	ure			
	(D)	None of the above		(D)	Anth	er cultu	ıre			

(8)

Set-D

41.	A plant cell without cell wall is known	44.	Which of the following is most effective
	as:		cytokinin used in shoot tip or meristem
	(A) Protoplast		culture ?
	(B) Protoplasm		(A) NAA
	(C) Tonoplast		(B) Zeatin
	(D) Cytoplast		(C) 2, 4-D
42.	Genome of an organism refers to its		(D) BAP
	total:	45.	Small excised portion used for the
	(A) Number of genes		production of mass of cells is known as:
	(B) Haploid DNA		(A) Callus
	(C) Number of proteins		(B) Explant
	(D) Number of chromosomes		(C) Fragments
43.	High cytokinin and low auxin are used in		(D) None of the above
	combination for the culture of :	46.	Who coined the term plasmid?
	(A) Shoot		(A) Herbert Boyer
	(B) Root		(B) Lederberg
	(C) Nodule		(C) Stanley
	(D) Organ		(D) Bentham

(9)

Set-D

47.	The production of adventitious roots and	51.	A short price of radioactive labelled
	shoots from cells of tissue culture is		single stranded DNA is called as:
	termed as:		(A) Probe
	(A) Suspension culture		(B) Clone
	(B) Micropropagation		(C) Vector
	(C) Callus culture		(D) rDNA
	(D) Organogenesis	52.	Introduction of rDNA into host cell is
48.	Protoplast without nucleus is known as:		called as:
	(A) Cytoplast		(A) Transcription
	(B) Sub-protoplast		(B) Transformation
	(C) Protoplasm		(C) Recombination
			(D) Transcription
	(D) None of the above	53.	DNA fragments of different sizes is
49.	Post-fertilization barriers can be		separated by :
	overcome by :		(A) Spectrophotometry
	(A) Endosperm culture		(B) Gel electrophoresis
	(B) Ovary culture		(C) Nanodrop method
	(C) Ovule culture		(D) Gene cloning
	(D) All of the above	54.	Process of removal of tumour inducing
			gene from T-DNA of Ti-plasmid is called
50.	Explant is sterilized by:		as:
	(A) Dry heat		(A) Disarming
	(B) Flame sterilization		(B) Splicing
	(C) Autoclaving		(C) Gene silencing
	(D) Mercuric chloride		(D) None of the above

(10)

Set-D

55.	Which of the following attracts	58.	The first molecular marker developed:
	Agrobacterium tumefaciens for injection		(A) AFLP
	in dictoyledonous plants ?		(B) RFLP
	(A) Methyl-digitokin		(C) RAPD
	(B) Anthyocyanin		(D) SNP
	(C) Acetosyringone	59.	Molecular markers are used for:
	(D) Flavonoids		(A) Linkage mapping
56.	Which of the following is an indirect		(B) Marker assisted selection
	method of gene transfer?		(C) QTL linkage mapping
	(A) Electroporation method		(D) All of the above
	(B) Micro-injection method	60.	Marker aided selection is also known
	(C) Particle gun method	00.	as:
	(D) Agrobacterium mediated gene		(A) Marker assisted selection
	transfer		(B) Mass selection
57.	Molecular markers are based on:		(C) Pure line selection
	(A) DNA		(D) None of the above
	(B) RNA		() - 1.1111 11 1111 1110 10
	(C) Proteins		

(D) Amino acids

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D)
Q. 2 (A) (B) (C) (D)
Q. 3 (A) (C) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।