Roll No									Question Booklet	Number
O. M. R. Serial No.										

M. Sc. (Industrial Chemistry) (Fourth Semester) EXAMINATION, July, 2022

CHEMISTRY OF LIFE

Paper Code								
MSIC	4	0	3					

Questions Booklet Series

C

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 100 questions. Examinee is required to answer any 75 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 75 questions are attempted by student, then the first attempted 75 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को किन्हीं 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 75 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 75 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा
 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण
 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या
 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी
 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

1.	An enzyme that joins the ends of two	5.	If the enzymeg amount is kept constant						
	strands of nucleic acid is:		and the substrate is then gradually						
	(A) Polymerase		, the reaction will increase until it						
	(B) Synthetase		reaches a maximum. (A) decreased						
	(C) Transferase								
	(D) Ligase		(B) increased						
	(D) Liguse		(C) kept constant						
2.	Diastase takes part in digestion of		(D) None of the above						
	(A) Starch	6.	The rate determining step of Michaelis-						
	(B) Protein		Menten kinetics is						
	(C) Fat		(A) The complex formation step						
	(D) Amino acids		(B) Complex dissociation step to						
2			produce products						
3.	Enzyme catalysing rearrangement of		(C) Product formation step						
	functional groups or atomic grouping		(D) All of the above						
	without altering molecular weight or	7.	The molecule which acts directly on an						
	number of atom is:		enzyme to lower its catalytic rate is						
	(A) Oxidoreductase		(A) Modulator						
	(B) Ligase		(B) Inhibitor						
	(C) Isomerase		(C) Accelerator						
	(D) Hydrolase		(D) None of the above						
4.	Enzyme activity is highest when the	8.	The inhibitor molecule structurally and						
	substrate concentration is:		chemically similar to the substrate						
			is						
	(A) Small		(A) non-competitive inhibitor						
	(B) High		(B) competitive inhibitor						
	(C) Unlimited		(C) Both (A) and (B)						
	(D) All of the above		(D) None of the above						

- 9. The catalytic efficiency of two distinct enzymes can be compared based on which of following factors?
 - (A) Size of the enzyme
 - (B) K_m
 - (C) pH of optimum value
 - (D) Product formation
- 10. Types of inhibition pattern based on Michaelis-Menten equation are :
 - (A) Competitive
 - (B) Non-competitive
 - (C) Reversible
 - (D) All of the above
- 11. Which of the following steps is assumed to be the slowest step in the Michaelis-Menten equation?
 - (A) The substrate consuming step
 - (B) Formation of enzyme substrate complex
 - (C) The product releasing step
 - (D) None of the above
- 12. Lock and key theory is based on the compatibility of :
 - (A) enzyme and product
 - (B) enzyme and substrate
 - (C) enzyme substrate complex and product
 - (D) enzyme and enzyme substrate complex

- 13. Treatment of influenza via the neuroaminidase inhibitor (Relenza) is an example of:
 - (A) Competitive inhibitor
 - (B) Non-competitive inhibitor
 - (C) Reversible enzyme inhibitor
 - (D) Irreversible enzyme inhibitor
- 14. Irreversible enzyme inhibitors bind to the enzyme, thus they dissociate very closely from the enzyme.
 - (A) losely
 - (B) tightly
 - (C) normally
 - (D) All of the above
- 15. Nucleosides contain:
 - (A) base-phosphate
 - (B) base-sugar
 - (C) sugar-phosphate
 - (D) base-sugar phosphate
- 16. The sugar molecule present in nucleotideis:
 - (A) hexose
 - (B) pentose
 - (C) tetrose
 - (D) glucose

	(A) Thymine		DNA primary structure ATGCCGATC :
	(B) Uracil		(A) AUGCCGUAC
	(C) Guanine		
	(D) Cytocine		(B) UACGGCUAG
18.	What is the composition of nucleotide?		(C) TACGGCTAG
	(A) base-sugar		(D) GATCGGCAT
	(B) base-phosphate	23.	Which part of the nucleotide is
	(C) base-sugar-phosphate	23.	
	(D) sugar-phosphate		responsible for the formation of bonds in
19.	Group of adjacent nucleotides are joined		DNA double helix ?
1).	at position.		(A) base
	(A) 3, 5		(B) sugar
	(B) 1, 4		(C) phosphate group
	(C) 2, 4		
	(D) 2, 3		(D) –OH group
20.	Which of the following base contains two	24.	The number of hydrogen bond present
20.	keto groups ?		between cytocine and guanine are :
	(A) adenine		(A) five
	(B) thymine		(B) four
	(C) gaunine		
	(D) cytocine		(C) three
21.	Michaelis constant K_m is the substrate		(D) two
	concentration at which rate of reaction is the maximal velocity attainable	25.	The backbone sugar of DNA is:
	at a particular concentration of enzyme.		(A) ribose
	(A) equal		(B) deoxyribose
	(B) half		•
	(C) double		(C) fructose
	(D) triple		(D) oxyribose

Purine base found in RNA is:

17.

22. Identify the complementary strand of the

MSIC	-403	(6)			Set-C
	(D)	A = C/U + G		(D)	cytocine
	(C)	A + T/G = C		(C)	thymine
	(B)	A + G/T + C		(B)	uracil
	(A)	A + U/G + C		(A)	adenine
29.	Whic	ch ratio is constant for DNA?		in th	e following :
	(D)	C-1	33.	Iden	tify the purine base of nucleic acids
	(C)	C-3		(D)	phosphoric acid
	(B)	C-4		(C)	amino acid
	(A)	C-5		(B)	nitrogen base
	carbo	on of sugar molecule?		(A)	pentose sugar
28.	Phos	phate group is attached to which		hydr	olysis of RNA?
	(D)	All of the above	32.	Whic	ch of the following does not yield on
	(C)	Thymine		(D)	None of the above
	(B)	Cytocine		(C)	G + C
	(A)	Uracil		(B)	A + T
	nucle	eotide ?		(A)	A + G
27.	Whic	ch of the following is pyramidine		ds-D	NA may be due to high content of:
	(D)	Amino acids	31.	An	increase melting temperature for a
	(C)	Proteins		(D)	nucleoside
	(B)	Lipids		(C)	nucleotide
	(A)	Carbohydrates		(B)	vitamin
	biom	olecule?		(A)	nucleic acid

26. Nucleic acids combine with which 30. ATP is a:

34.	Which among the following bonds	38.	Sphingolipids or Shingophospholipids are
	stabilizes the DNA double strand		derivatives of :
	structure ?		(A) Phophatidyl glycerol
	(A) phosphodiester		(B) Cardiolipin
			(C) Sphingosine
	(B) H-bond		(D) None of the above
	(C) peptide	39.	Fatty acids are linked to before
	(D) oxo-linkage of sugar		they are oxidised in lipid metabolism.
35.	is a spherical vesicle having at		(A) enzyme
	least one lipid bilayer.		(B) cofactor
			(C) coenzyme-A
	(A) Liposomes		(D) All of the above
	(B) Micelles	40.	The activation reaction of fatty acid
	(C) Both (A) and (B)		occurs on the :
	(D) None of the above		(A) Mitochondrial membrane
36.	Only the ends or edges of bilayer sheet		(B) Cell membrane
30.	,		(C) Nuclear membrane
	are exposed to:		(D) Golgi complex
	(A) an unfavourable environment	41.	Oxidation of fatty acid produces large
	(B) favourable environment	11.	quantity of:
	(C) favourable and unfavourable		(A) ADP (Adenosine diphosphate)
	environment		(B) Adensosine triphosphate (ATP)
	(D) All of the above		(C) Adenosine monophosphate (AMP)
			(D) None of the above
37.	is the surface active agent and help	42.	In which part of the cell the enzymes for
	in emulsification of fat.	12.	β -oxidation is present ?
	(A) Lecithin		•
	(B) Cephalin		(A) Golgi apparatus
	(C) Phosphatidyl inositol		(B) Nucleus
	•		(C) Cytosol
	(D) All of the above		(D) Mitochondria

- 43. Which one the following is an essential fatty acid?
 - (A) Linolenic acid
 - (B) Palmitic acid
 - (C) Linoleic acid
 - (D) Both (A) and (B)
- 44. Which of the following undergoes β oxidation?
 - (A) Saturated fatty acids
 - (B) Monounsaturated fatty acids
 - (C) Polyunsaturated fatty acids
 - (D) All of the above
- 45. The long-chain fatty acids get transported through the inner mitochondrial membrane:
 - (A) freely
 - (B) as cornitine derivative
 - (C) as acyl-CoA derivative
 - (D) require sodium-dependent carrier
- 46. Which of the following product is released in α -oxidation of fatty acids?
 - (A) CoA
 - (B) H₂O
 - (C) CO₂
 - (D) Acetyl CoA

- 47. Which of the following factors is not responsible for the denaturation of proteins?
 - (A) pH change
 - (B) Heat
 - (C) Charge
 - (D) Organic solvents
- 48. What type of bond is present between the amino acid?
 - (A) Acidic bond
 - (B) Ionic bond
 - (C) Peptide bond
 - (D) Coordinate bond
- 49. Which of the following cell organelles is involved in the process of protein synthesis?
 - (A) Vesicles
 - (B) Mitochondria
 - (C) Ribosomes
 - (D) Vacuoles
- 50. Which of the following is false about fibrous proteins?
 - (A) Keratin and collagen are the best examples.
 - (B) It is in rod or wire like shape.
 - (C) Hemoglobin is the best example.
 - (D) It provides structural support for cells and tissues.

51.	Smooth endoplasmic reticulum:	54.	are directly involved in normal						
	(A) activaly manticipate in matrix		growth, development and reproduction of						
	(A) actively participate in protein		living organism.						
	synthesis		(A) Secondary metabolites						
	(B) does not actively participate in		(B) Primary metabolites						
	protein synthesis		(C) Both (A) and (B)						
	(C) participate in protein and lipid		(D) None of the above						
	synthesis	55.	Cell biology is the						
	(D) does not participate in lipid and		(A) Study of metaphase of a cell						
	protein synthesis		(B) Study of cell division only						
			(C) Study of cancereous cell						
52.	Which one of the following is formed		(D) Study of cell structure and						
	when cell feeds on the intracellular		functions						
	organelles such as mitochondria?	56.	Which of the following is known as						
	(A) Autophagie vacuoles		power house of the cell?						
	(B) Residual bodies		(A) Cytoplasm						
	(C) Secondary lysosomes		(B) Lysosome						
			(C) Mitochondria						
	(D) All of the above		(D) Nuclei						
53.	Which one is the fundamental and	57.	Which of the following is known as the						
	structural unit of all living organisms?		suicide bag of a cell ?						
	(A) tissue		(A) Golgi complex						
	(B) organs		(B) Lysosome						
	(C) cell		(C) Endoplasmic reticulum						
	(D) organ system		(D) Ribosome						

(9)

Set-C

MSIC-403

MSIC	c-403 (10)	Set-C						
	(D) Plasma cells		(D) bounded by 2 membranes of lipid and protein						
	(B) Pancreatic cells(C) Adipose cells		(C) bounded by 2 membranes of carbohydrate						
	(A) Liver cells		only						
	in:		lipoprotein (B) bounded by 2 membranes of lipid						
61.	Smooth endoplasmic reticulum is found		(A) bounded by 2 membranes of						
	(D) None of the above	65.	Nuclear membrane is:						
	(C) Both (A) and (B)		(D) 90S						
	(B) presence of ribosomes		(C) 65S						
	(A) absence of ribosomes		(A) 80S (B) 70S						
	rough due to:		cells of plants and animals.						
60.	Membrane of endoplasmic reticulum is	64.	ribosomes occur in eukaryotic						
	(D) Nucleoplasm		(D) Ribosomes						
	(C) Cytoplasm		(C) Vacuoles						
	(B) Cell wall		(B) Mitochondria						
	(A) Plasma membrane		(A) Golgi bodies						
	external and non-living covering of cell.		and fats are completely oxidised into CO_2 and H_2O is :						
59.	is a semi-rigid, laminated,		where the food stuffs i. e. carbohydrates						
	(D) Basal granules	63.	The actual respiratory organs of the cells						
	(C) Ribosome		(D) None of the above						
	(B) Golgi complex		(C) Both (A) and (B)						
	(A) Endoplasmic reticulum		(B) Glyconeogenesis						
	and packaging proteins and lipids?		(A) Fatty acid metabolism						
	responsible for transporting modifying		contains enzymes for :						
58.	Which of the following cell organelle is	62.	Glyoxysome present in plant cells						

66.	Spac	e between nuclear envelope a	ınd	70.	Dena	atured proteins are:
	nucle	ear membrane is filled by:			(A)	Insoluble proteins formed by action
	(A)	Cytoplasm				of heat on protein
	(B)	Cytoplasmic matrix			(B)	Soluble proteins formed by action
	(C)	Nucleoplasm				of a heat on protein
	(D)	Nucleolus			(C)	Soluble proteins formed by action
67.	The j	proteins which take basic strain are	e:		(0)	of chemicals on protein
	(A)	Nucleoprotamines	ind		(D)	Insoluble proteins formed by action
		Nucleohistones			, ,	of heat and chemicals on protein
	(B)	Histones with rich lysine				or near and entiments on protein
	(C)	Histone with rich arginine		71.	Whi	ch one of the following is the linear
	(D)	Non-histone protein			cond	lensation product of neutral amino
68.	Basic	c unit of protein is :			acid	?
	(A)	Peptides			(A)	Globular protein
	(B)	Amino acids			(B)	Fibrous protein
	(C)	Enzymes			(C)	Intermediate protein
	(D)	All of the above			(D)	None of the above
69.	Whic	ch one of the following on hydroly	sis	72.	Seru	m albumin comes under the category
	yield	l non-proteineous substances a	and		of:	
	amin	no acid?				
	(A)	Conjugated protein			(A)	Storage protein
	(B)	Derived protein			(B)	Contractite protein
	(C)	Simple protein			(C)	Transport protein
	(D)	Secondary protein			(D)	Respiratory protein

(11)

Set-C

MSIC-403

73.	The	α -helix secondary structure of	76.	Hyd	rophobic interaction generally							
	prote	ein is stabilized by :		cont	ribute to the:							
	proc	on is stabilized by .		(A)	(A) folding and shaping of a protein							
	(A)	Intermolecular Hydrogen bonding		(B)	defolding and shaping of a protein							
	(B)	Intramolecular Hydrogen bonding		(C)	folding and non-shaping of a							
	(D)	intramolecular frydrogen bonding			protein							
	(C)	Inter and intramolecular Hydrogen		(D)	defolding and non-shaping of a							
		bonding			protein							
			77.	Hear	moglobin has :							
	(D)	Covalent bonding		(A)	Secondary structure of protein							
74.	Mvo	globin carries in muscles.		(B)	Tertiary structure of protein							
	J	6		(C)	Quaternary structure of protein							
	(A)	water		(D)	Both Secondary structure and							
	(B)	carbon dioxide			tertiary structure							
	(C)		78.	Whi	ch one of the following is responsible							
	(C)	oxygen		for metabolism of carbohydrate ?								
	(D)	All of the above		(A)	Insulin							
				(B)	Myoglobin							
75.	Bono	ds responsible for the 3-dimensional		(C)	Hormones							
	struc	cture of proteins are :		(D)	Fats							
	(A)	Hydrogen, ionic and hydrophobic	79.	1-flu	oro-2, 4-dinitrobenzene (FDNB) is							
	(11)	Trydrogen, tome and nydrophoole		used	for amino-end degradation in :							
	(B)	Hydrogen bond only		(A)	Edman's method							
	(C)	Hydrogen and ionic		(B)	Dansyl method							
				(C)	Sanger's method							
	(D)	Hydrogen and hydrophobic		(D)	Enzymatic method							

(12)

Set-C

MSIC-403

- 80. Which one of the following is used amino-end degradation in Dansyl method?
 - (A) 1-dimethylamino naphthalene-5-sulphonyl chloride
 - (B) 1-fluoro-2, 4-dinitrobenzene
 - (C) Phenyl isothiocyanate
 - (D) Lithium aluminium hydrie
- 81. Leucine amino peptidase enzyme attacks proteins only at :
 - (A) the end which contains free amino group
 - (B) the end which contains free carboxyl group
 - (C) the end which contain free amino group or carboxyl group
 - (D) the middle of the protein
- 82. In hydrazinolysis the peptide or protein is heated with:
 - (A) anhydrous hydrazine
 - (B) hydrous hydrazine
 - (C) Both (A) and (B)
 - (D) Aminoacid hydrazides

- 83. Pepsin attacks peptides having:
 - (A) NH part of leucine, aspartic acid and CO part of glysine, arginine
 - (B) CO part of leucine, aspartic acid and NH part of glycine, arginine
 - (C) Both (A) and (B)
 - (D) None of the above
- 84. Cyanogen bromide in aqueous formic acid attacks only those peptides in which:
 - (A) CO group of methionine residues
 - (B) CO group of non-methionine residue
 - (C) NH group of methionine residue
 - (D) NH group of non-methionine residue
- 85. Saponifiable lipids are hydrolysed by :
 - (A) heat, alkali or acid solution
 - (B) only by heat
 - (C) heat and alkali solution
 - (D) heat and acid solution
- 86. The proteins help to protect from any diseases in the body is:
 - (A) Enzymes
 - (B) Storage proteins
 - (C) Transport proteins
 - (D) Antibodies

87.	Which protein is called transport	91.	The structure in which all peptide chains					
	protein?		are stritched out to full extension and laid					
	(A) Haemoglobin		side by through intermolecular hydrogen					
	(B) Keratin							
	(C) Enzymes		bond is called:					
	(D) Oval bumin		(A) Tertiary structure					
88.	In hair which protein is found?		(B) β-pleated sheet					
	(A) Myosin		(b) p-picated sheet					
	(B) Elastin		(C) Quaternary structure					
	(C) Keratin		(D) α-helix					
	(D) Tropocollage							
89.	Disulphide bonds are formed between:	92.	Fibrous and globular proteins are					
	(A) Cysteine residues that are close		classified on the basis of:					
	together.		(A) Dimensional management					
	(B) Histidine residue that are close		(A) Primary structure					
	together.		(B) Tertiary structure					
	(C) Protein residue that are close		(C) Secondary structure					
	together.		(D) Ocean and a second second					
	(D) Phenylalanine residue that are close		(D) Quaternary structure					
	together.	93.	perform external protective					
90.	Primary structure of protein represents:		function.					
	(A) Linear sequence of amino acids		(A) Waxes					
	joined by peptide bond		(D) Al 1 1					
	(B) 3-dimensional structure of protein		(B) Alcohols					
	(C) Helical structure of protein		(C) Phosphoglycerides					
	(D) Subunit structure of protein		(D) All of the above					

MSIC-403 (14) Set-C

94.	The	action	of	certain	•••••	. is	97.			enzyme	catlay	ze	oxid	ation-	
	medi	iated thro	ough	phosphat	idyl inosit	ol.				reaction	where	elec	etron((s) is	
	(A)	enzyme	es					are transferred. (A) Transferase							
	(B)	hormor	nes					(A) Transferase(B) Oxidoreduatase							
	(C)	protein	S					(C)	Нус	drolase					
	(D)	carbohy	ydrate	e				(D)	Isor	merase					
95.	Whi	ch one of	f the	following	g is respon	sible	98.	Pepsin hydrolyzes in proteins.						ns.	
	for (deteriora	tion	of food	(rancidity) as		(A) (B)	•	drogen bo					
	well	as for da	ımage	e to tissu	es?			(C)	Peptide bonds Sulphide bonds						
	(A)				l exposed	l to		(D)	Carbon-carbon double bo $(C = C)$						
	(B)	oxygen		of lin	id avnosa	99.	The	`	= C) e of enzy	me is :					
	(D)	Peroxidation of lipid exposed to oxygen					(A)	Vitamin Lipid Carbohydrate							
	(C)	Peroxidation of lipid exposed to												(B) (C)	
		CO_2					(D)	Protein							
	(D)	Oxidati	on o	f lipid ex	posed to C	O_2	100.	The	stater	ment abou	ut enzyr	nes i	s true	:	
96.	Basic	c structu	ıre iı	n biologi	ical memb	orane		(A)	enzymes increases reactions by lowering the activation energy.						
	cons	consists of :							enz	enzymes do not alter the overa					
	(A)	bilayer	of an	nphiphat	ic lipid			(C)	change in free energy for a reaction enzymes are protein whose three-						
	(B)	single l	ayer	of amphi	phatic lipid			(C)		ensional	-				
	(C)								fund	ction.					
	(D)							(D)	All	of the ab	ove				

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q.1 (A) (C) (D)
Q.2 (A) (B) (C) (D)
Q.3 (A) (C) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।