Roll No	 				Question Booklet Number
O. M. R. Serial No.					

M. Sc. (Biotechnology) (Second Semester) EXAMINATION, July, 2022

PHYSIOLOGY & METABOLISM

Pap	Paper Code				
MBT	2	0	0	3	

Questions Booklet Series

C

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 60 questions. Examinee is required to answer any 50 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 50 questions are attempted by student, then the first attempted 50 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 60 प्रश्न हैं। परीक्षार्थी को किन्हीं 50 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 50 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 50 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

1 FAD, 1 NADH and 1 acetyl-CoA (A) 1 FADH₂, 1 NADH and 1 acetyl-(B) CoA (C) 1 FAD, 1 NAD $^+$, and 2CO $_2$ molecules. (D) 1 FADH₂, 1 NADH and 2CO₂ molecules. 2. Oxidation of palmitic acid (C16)involves _____ rounds of B-oxidation and yields _____ molecules of acetyl-CoA. (A) 8, 8 (B) 7, 8 (C) 16, 8 (D) 7, 7 3. Which of the following would yield the most energy per gram when oxidized? (A) Starch Glycogen (B) (C) Fat (D) Protein MBT-2003

Each cycle of β -oxidation produces :

1.

- 4. The acyl-CoA formed in the cytosol is transported to the–for oxidation using a shuttle involving the intermediate formation of acyl ______.
 - (A) mitochondrial matrix, carnitine
 - (B) mitochondrial matrix, coenzyme A
 - (C) endoplasmic reticulum, albumin
 - (D) endoplasmic reticulum, carnitine
- 5. The major difference between the anabolism and catabolism of fatty acids is that:
 - (A) Acetyl-CoA is not required for anabolism.
 - (B) Anabolism occurs in the intermembrane space of mitochondria while catabolism takes place in the mitochondrial matrix.
 - (C) Biotin is required for oxidation of fatty acids but not for anabolism.
 - (D) NADPH is required for anabolism of fatty acids and not for catabolism.

	(A) An organism consumes excessive		(A) HDL
	amounts of carbohydrate.		(B) LDL
	(B) Oxaloacetate is converted to		(C) VLDL
	acetyl-CoA.		(D) Chylomicrons
	(C) There is a deficiency of acetyl-CoA.	10.	Bile acid is synthesized in
	(D) There is not enough oxaloacetate to		(A) Kidney
	react with available acetyl-CoA.		(B) Liver
7.	Most of the reducing equivalents		(C) Pancreas
7.	(NADPH) utilized for the synthesis of		(D) Stomach
	fatty acids can be generated from:	11.	Which out of the following amino acids
	(A) Glycolysis		is not converted to Succinyl co A?
	(B) Mitochondrial malate dehy-		(A) Methionine
	drogenase		(B) Valine
	(C) The citric acid cycle		(C) Isoleucine
	(D) The pentose-phosphate pathway		(D) Histidine
8.	During each cycle of ongoing fatty acid	12.	All of the following compounds are
	oxidation, all the following compounds		synthesized by transmethylation
	are generated, except:		reactions, except:
	(A) Acetyl-CoA		(A) Choline
	(B) Fatty acyl-CoA		(B) Epinephrine
	(C) NADH		(C) Creatine
	(D) Water		(D) Ethanolamine

9.

High content of triglyceride is seen in:

Ketone bodies are formed when:

6.

- 13. The diet of a child suffering from Maple syrup urine disease (an amino acid disorder), should be low, in which out of the following amino acids content?
 - (A) Branched chain amino acids
 - (B) Phenylalanine alanine
 - (C) Methionine
 - (D) Tryptophan
- 14. Urea is synthesized in:
 - (A) Cytoplasm
 - (B) Mitochondria
 - (C) Both cytoplasm and mitochondria
 - (D) Lysosomes
- 15. All of the following amino acids are donors of one carbon compounds, except:
 - (A) Histidine
 - (B) Tyrosine
 - (C) Tryptophan
 - (D) Serine

- 16. The two nitrogen of urea are derived from:
 - (A) Aspartate and ammonia
 - (B) Glutamate and ammonia
 - (C) Argino succinate and ammonia
 - (D) Alanine and ammonia
- 17. Which coenzyme out of the following is required for the oxidative deamination of most of amino acids?
 - (A) Folic acid
 - (B) Pyridoxal-P
 - (C) FMN
 - (D) FAD
- 18. Choose the incorrect statement about amino acid glycine:
 - (A) One carbon donor
 - (B) Required for the synthesis of haem
 - (C) Forms oxalates upon catabolism
 - (D) Both glucogenic as well as ketogenic
- 19. Which out of the following is required as a coenzyme for the transamination reactions?
 - (A) Coenzyme-A
 - (B) Pyridoxal-P
 - (C) Folic acid
 - (D) Cobalamine

20.	In which form the nitrogen is	24.	In the first committed step of pyrimidine
	incorporated into an amino acid?		biosynthesis, the reaction is catalyzed
	(A) Nitrite		by
	(B) Glutamate		
	(C) Nitrate		(A) Adenylate kinase
	(D) Ammonium ion		(B) Aspartate transcarbamoylase
21.	An amino group donated by glutamine is		(C) Dihyhroorotase
	attached at C-1 of PRPP, this results		
	in		(D) Cytidylate synthase
	(A) 5-phosphoribosylamine	25.	Phosphorylation of AMP to ADP is
	(B) 4-phosphoribosylamine		promoted by
	(C) 3-phosphoribosylamine		promoted by
	(D) 2-phosphoribosylamine		(A) Adenylate kinase
22.	The first intermediate with a complete		(B) Aspartate transcarbamoylase
	purine ring is		(C) Dihyhroorotase
	(A) Inosinate		
	(B) Formate		(D) Cytidylate synthase
	(C) Aspartate	26.	CTP is formed from UTP by the action
	(D) Glycine		of
23.	Which of the following is an important		
	precursor in the purine pathway ?		(A) Adenylate kinase
	(A) Glycine		(B) Aspartate transcarbamoylase
	(B) Aspartate		(C) Dihyhroorotase
	(C) Glutamine		-
	(D) Leucine		(D) Cytidylate synthase

27.	Conversion of dUMP to dTMP is	31.	Which of the following equations shows
	catalyzed by		the relationship between free energy
	(A) Thymidylate synthase		change (ΔG) and the change in entropy
	(B) Dihydrofolate reductase		(ΔS) , under constant temperature and
	(C) Dihyhroorotase		pressure ?
	(D) Cytidylate synthase		(A) $\Delta G = T\Delta H - \Delta S$
28.	Adenosine deaminase deaminates		(B) $\Delta G = T\Delta H/\Delta S$
	adenosine to		(5) 20 121120
	(A) Hypoxanthine		(C) $\Delta G = \Delta H/T\Delta S$
	(B) Inosine		(D) $\Delta G = \Delta H - T \Delta S$
	(C) Xanthine	32.	What is the site for gluconeogenesis?
	(D) Guanosine	3 2.	
29.	Which of the following is degraded to		(A) Liver
	methylmalonyl semialdehyde ?		(B) Blood
	(A) Glutamine		(C) Muscles
	(B) Tyrosine		(D) Brain
	(C) Thymine	33.	Law of thermodynamics which states that
	(D) Leucine	33.	energy can neither be created nor be
30.	Which of the following is an important		destroyed is
	precursor in pyrimidine pathway?		·
	(A) Glycine		(A) The second law of thermodynamics
	(B) Aspartate		(B) Third law of thermodynamics
	(C) Glutamine		(C) First law of thermodynamics
	(D) Leucine		(D) Zero-order kinetics

(7)

Set-C

MBT-2003

- 34. Gibbs' free energy is the portion of the total energy which is available for useful work.
 - (A) True
 - (B) False
- 35. Name the enzyme which is responsible for the conversion of pyruvate to phosphoenolpyruvate (PEP) ?
 - (A) Pyruvate carboxylase
 - (B) Pyruvate carboxykinase
 - (C) Glucose-6-phosphatase
 - (D) Phosphofructokinase
- 36. Which of the following are major sites for glycogen storage?
 - (A) Adipose tissue
 - (B) Bones
 - (C) Muscle and liver
 - (D) Kidney and liver
- 37. What is the value of ΔG , when a system is in equilibrium?
 - (A) $\Delta G = 0$
 - (B) $\Delta G = 1$
 - (C) $\Delta G = -1$
 - (D) $\Delta G = \Delta G^0$

- 38. Which of the following act as a storage form of high energy phosphate?
 - (A) Glucose-6-phosphate
 - (B) Phosphoenolpyruvate
 - (C) Phosphazens
 - (D) Glycerol phosphate
- 39. Which of the following is the precursor of glycogen?
 - (A) Glycerol-3-phosphate
 - (B) Malate
 - (C) UDP-glucose
 - (D) Leucine and lysine
- 40. What is the name of the molecule which donates its electrons?
 - (A) Reducing agent
 - (B) Oxidative agent
 - (C) Standard reduction potential
 - (D) Oxidant
- 41. Which of the following hormones maintain blood glucose level by activation of gluconeogenesis?
 - (A) Norepinephrine
 - (B) Glucagon
 - (C) Insulin
 - (D) Epinephrine

42.	Name the enzyme which is used for	46.	The final product of the catabolism of the
	branching of glycogen:		eaten potato in the human body is
	(A) Branching enzyme		mainly
	(B) Hexokinase		(A) starch
	(C) Phosphoglucomutase		(B) maltose
	(D) Glycogen synthase		(C) glucose
43.	What is the final product of electron		(D) carbon dioxide and water
	transport chain ?		
	(A) AMP	47.	The concentration of $C_6H_{12}O_6$ in normal
	(B) H ₂ O		blood is stable at 80-120 mg/dL and the
	(C) ATP		source of blood sugar does not include
	(D) ADP		.
44.	Glycolysis is also known as		(A) Absorbed after digesting food
	(A) Citric acid cycle		(B) Hepatic glycogenolysis
	(B) Tricarboxylic acid cycle		(C) Conversion of non-sugar
	(C) Kreb's cycle		substances
	(D) Embden-Meyerhof pathway		(D) Muscle glycogenolysis
45.	Citric acid cycle essentially involves the		(D) Musele gijeogenorjala
	oxidation of acetyl-CoA to CO_2	48.	Which of the following enzymes are not
	and		involved in glycolysis metabolism?
	(A) H ₂ O		(A) Hexokinase
	(B) O ₂		(B) Pyruvate kinase
	(C) H_2O_2		(C) Citrate synthase
	(D) S ₂		(D) None of the above

(9)

Set-C

MBT-2003

49.	Pyruvate, the end product of glycolysis,	52.	Which metabolic pathway or process is
	enters the citric acid cycle after it has		common to both aerobic and anaerobic
	been converted to:		oxidation of sugar ?
	(A) Acetaldehyde		(A) Kreb's cycle
	(B) Lactic acid		(B) Chemiosmosis in mitochondrion
	(C) Acetic acid		(C) Glycolysis
	(D) Acetyl-CoA		(D) Oxidation of NAD ⁺ by the electron
	(_ /		transport chain
50.	Most of the ATP made during cellular	53.	The FADH ₂ and NADH produced by
	respiration is generated by :		the oxidation of one acetyl-CoA result in
	(A) substrate-level phosphorylation		the synthesis of about ATPs.
	(B) oxidative phosphorylation		(A) 4
	(C) glycolysis		(A) 4 (B) 7
	(D) photophosphorylation		(C) 11
51.	Oxidative decarboxylations:		(D) 15
	(A) do not occur in the TCA cycle	54.	During electron transport, protons
	(B) involve loss of CO ₂ and the		are pumped out of the mitochondrion
	production of NAD		at each of the major sites except
	(C) involve loss of CO_2 and the		for:
			(A) Complex I
	production of NADH		(B) Complex II
	(D) involve loss of CO ₂ and the		(C) Complex III

(D) Complex IV

production of $FADH_2$

55.	The	cytochrome c oxidase complex:	58.	Gluc	ose-6-Phosphate dehydrogenase
	(A)	accepts electrons from cyt-c.		is	allosterically inhibited
	(B)	donates four electrons to O_2 .		by_	·
	(C)	produces 2 H ₂ O per O ₂ reduced		(A)	Acetyl-CoA
	(D)	All of the above are correct.		(D)	C
56.	Whi	ch of the following steps is common		(B)	Citrate
	in th	ne glycolysis and pentose-phosphate		(C)	Glucose
	path	way?		(D)	Fructose
	(A)	Conversion of glucose to glucose-6-P	59.	Bile	acid is derived from :
	(B)	Conversion of glucose-6-p to		(A)	Cholesterol
	(C)	ribose-5-P Conversion of glucose-6-Pto		(B)	Amino acids
	(0)	fructose-6-P		(C)	Fatty acids
	(D)	Conversion of glucose to glucose-1-P		(D)	Bilirubin
57.	Pent	ose-phosphate pathway is	60.	Whic	ch of the following inhibits acetyl-
	respo	onsible for generating NADPH		CoA	carboxylase-a rate-limiting enzyme
		Which of the following enzyme is		of fa	tty metabolism ?
	invo	lved in generating NADPH?		(A)	Citrate
	(A)	Glucose-6-P oxidase		(B)	ATP
	(B)	Glucose-6-P dehydrogenase		(C)	Malonyl-CoA
	(C)	Glucose-6-P reductase		(D)	A1 C - A
	(D)	Glucose-6-P synthetase		(D)	Acyl-CoA
MBT-	-2003	(11)			Set-C

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

Q.3 $\stackrel{\frown}{(A)}$ $\stackrel{\frown}{(C)}$ $\stackrel{\frown}{(C)}$

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।