Roll No	•••••					Question Booklet Number
O. M. R. Serial No.						

M. Sc. (Electronics) (Fourth Semester) EXAMINATION, July, 2022

(Elective Course)

INFORMATION THEORY & CODING

P	ape	er Co	de	
ELC	4	0	4	(H)

Questions Booklet Series

B

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 60 questions. Examinee is required to answer any 50 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 50 questions are attempted by student, then the first attempted 50 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश:

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 60 प्रश्न हैं। परीक्षार्थी को किन्हीं 50 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 50 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 50 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

1.	Predi	ction gain for better	4.	The	output SNR can be made
	prediction.			•	pendent of input signal level by
	(A)	Increases		using	; :
	()			(A)	Uniform quantizer
	(B)	Decreases		(B)	Non-uniform quantizer
	(C)	Remains same		(C)	Uniform and Non-uniform
	(D)	None of the above		(D)	quantizer None of the above
2.	The	low pass filter at the output end of	5.	Whic	ch type of quantization is most
	delta	modulator depends on :		prefe ear ?	rable for audio signals for a human
	(A)	Step size			
	(D)			(A)	Uniform quantization
	(B)	Quantization noise		(B)	Non-uniform quantization
	(C)	Bandwidth		(C)	Uniform and Non-uniform
	(D)	None of the above		(D)	quantization None of the above
3.	Ther	mal noise power of a resistor	6.	The o	channel capacity is:
	depe	nds upon :		(A)	The maximum information
	(A)	Its resistance value			transmitted by one symbol over the channel
	(B)	Noise temperature		(B)	Information contained in a signal
	(C)	Bandwidth		(C)	The amplitude of the modulated signal
	(D)	Ambient temperature		(D)	All of the above

(3)

Set-B

- 7. For decoding in convolution coding, in a code tree:
 - (A) Diverge upward when a bit is 0 and diverge downward when the bit is 1.
 - (B) Diverge downward when a bit is 0 and diverge upward when the bit is 1.
 - (C) Diverge left when a bit is 0 and diverge right when the bit is 1.
 - (D) Diverge right when a bit is 0 and diverge left when the bit is 1.
- 8. Interleaving process permits a burst of B bits, with *l* as consecutive code bits and *t* errors when:
 - (A) $B \le 2tl$
 - (B) $B \ge tl$
 - (C) $B \le tl / 2$
 - (D) $B \le tl$
- 9. Assuming that the channel is noiseless, if TV channels are 8 kHz wide with the bits/sample = 3 Hz and signalling rate = 16×10^6 samples/second, then what would be the value of data rate?
 - (A) 16 Mbps
 - (B) 24 Mbps
 - (C) 48 Mbps
 - (D) 64 Mbps

- 10. Which approach plays a cardinal role in supporting the results obtained regarding the information capacity theorem?
 - (A) Line Packing
 - (B) Volume Packing
 - (C) Sphere Packing
 - (D) All of the above
- 11. According to Shannon's second theorem, it is not feasible to transmit information over the channel with error probability, although by using any coding technique.
 - (A) small
 - (B) large
 - (C) stable
 - (D) unpredictable
- 12. If the channel is band limited to 6 kHz and signal to noise ratio is 16, what would be the capacity of channel?
 - (A) 15.15 Kbps
 - (B) 24.74 Kbps
 - (C) 30.12 Kbps
 - (D) 52.18 Kbps

13.	In channel coding theorem, channel	16.	The cyclic codes are designed using:
	capacity decides the		(A) Shift registers with feedback
	permissible rate at which error free		(B) Shift registers without feedback
	transmission is possible.		(C) Flip-flops
	(A) maximum		(D) None of the above
	(B) minimum	17.	A cyclic code can be generated using
	(C) constant		(A) Generator polynomial
	(D) None of the above		(B) Generator matrix
14.	In digital communication exists a smaller		(b) Generator matrix
14.	In digital communication system, smaller		(C) Generator polynomial and matrix
	the code rate, are the		(D) None of the above
	redundant bits.	18.	The feedback shift register circuit is
	(A) less		called as :
	(B) more		(A) Multiplying circuit
	(C) equal		(B) Dividing circuit
	(D) unpredictable		•
			(C) Feedback circuit
15.	Which type of channel does not represent		(D) Shifting circuit
	any correlation between input and output	19.	In the dividing circuit, the parity
	symbols?		polynomial is obtained by the :
	(A) Noiseless channel		(A) Quotient
	(B) Lossless channel		(B) Remainder
	(C) Useless channel		(C) Dividend
	(D) Deterministic channel		(D) Divisor

(5)

Set-B

20.	The	received code contains an error if the	24.	The	rate of a block code is the ration of:
	synd	rome vector is:		(A)	Block length to message length
	(A)	Zero		(B)	Message length to block length
	(B)	Non-zero		(C)	Message weight to block length
	(C)	Infinity		(D)	None of the above
	(D)	None of the above		` /	
21.	Bloc	k codes are generated using:	25.	Line	ar codes are used for:
	(A)	Generator polynomial		(A)	Forward error correction
	(B)	Generator polynomial and matrix		(B)	Backward error correction
	(C)	Generator matrix		(C)	Forward error detection
	(D)	None of the above		(D)	Backward error detection
22.	Exte	nded go-lay code is formed by:	26.	The	k-bit message forms
	(A)	Adding overall parity bit to perfect		disti	nct messages which is referred to as
		go-lay code		<i>k</i> -tup	bles.
	(B)	Ex-oaring overall parity bit with		(A)	2k
		perfect go-lay code		, ,	k^2
	(C)	Ex-oaring each bit of go-lay code		(B)	K
	(D)	Dividing the overall parity bit with		(C)	2k
		perfect go-lay code		(D)	21/k
23.	Bloc	k length is the in the	27.	The	sum of any two vectors in subset S is
	code	e-word.		also	in S. This is called as:
	(A)	Number of elements		(A)	Addition property
	(B)	Distance between elements		(B)	Subset property
	(C)	Number of parity bits		(C)	Closure property
	(D)	None of the above		(D)	Similarity property

(6)

Set-B

ELC-	-404(H)	(7)			Set-B
	(D)	Subspace			(D)	D _{min} / 2
	` /				(C)	D_{min}
	(C)	Distance			(B)	$D_{min} - 1$
	(B)	Weight			(A)	$D_{min} + 1$
				35.	Error	detecting capability is given as:
	(A)	Size			(D)	None of the above
	elem	ents.			(C)	Minimum distance
	-1	4			(B)	Weight
	is	the number of non-zero			(A)	Size
50.	1110	of the code-word			code-	-words.
30.	(D) The				word	which is the sum of the first two
					equal	to the of the third code-
	(D)	None of the above		34.	The o	distance between two code-words is
	(C)	rH			(D)	Code size
	(-)				(C)	Code weight
	(B)	rHT			(B)	Maximum distance
	(A)	HT/r			(A)	Minimum distance
				33.	Code	strength is characterized by it:
29.	Synd	frome is calculated by:			(D)	None of the above
					(C)	they are non-zero
	(D)	2n			(B)	they differ
	(C)	2n + k			(A)	they are same
	(C)	2 1-				per of elements in which:
	(B)	2n-k		32.	Hami	ming distance can be given by the
	(A)	∠n.			(D)	All of the above
	(A)	2k			(C)	Parity code
	is	coset.			(B)	Reed-Solomon code
					(A)	Hamming code
28.	In a	standard matrix set code-word there		31.	Some	e examples of linear codes:

- 36. The minimum distance D_{min} can also be given as :
 - (A) $D_{min} > = \alpha + \beta + 1$
 - (B) $D_{min} < = \alpha + \beta + 1$
 - (C) $D_{min} > = \alpha + \beta 1$
 - (D) $D_{min} < = \alpha + \beta 1$
- 37. For better efficiency and simplicity, *n* should be:
 - (A) Maximum
 - (B) Minimum
 - (C) Zero
 - (D) Infinity
- 38. Nyquist frequency is given by:
 - (A) f_s
 - (B) $2f_s$
 - (C) $f_s/2$
 - (D) None of the above
- 39. Some various types of distortion are:
 - (A) Jitter
 - (B) Noise
 - (C) Aperture error
 - (D) All of the above
- 40. Noise which can affect sampling are:
 - (A) Thermal sensor noise
 - (B) Analog circuit noise
 - (C) Thermal sensor and Analog circuit noise
 - (D) None of the above

- 41. Oversampling can completely eliminate:
 - (A) Aperture error
 - (B) Non-linearity
 - (C) Quantization error
 - (D) All of the above
- 42. What is the bit depth used for audio recording?
 - (A) 8 bits
 - (B) 16 bits
 - (C) 24 bits
 - (D) All of the above
- 43. Which factors are measured using the units of lines per picture height?
 - (A) Resolution
 - (B) Sampling rate
 - (C) Resolution and Sampling rate
 - (D) None of the above
- 44. Sampling of simultaneously two different but related waveforms is called as:
 - (A) Over-sampling
 - (B) Complex sampling
 - (C) Intersampling
 - (D) None of the above
- 45. Sampling can be done for functions varying in :
 - (A) Space
 - (B) Time
 - (C) Space and Time
 - (D) None of the above

	` '			, ,	
	(D)	None of the above		(D)	0.8
	(C)	Prefix and Suffix condition code		(C)	0.4
	(B)	Suffix condition code		(B)	0.5
	(A)	Prefix condition code		(A)	
49.	Bina	ry Huffman coding is a :			
4.6	` /			The	probability P $(0.5 < x < 5)$
	(D)	None of the above			= 0, otherwise
		information is received.			= 0.1, for 1 < x < 4
	(C)	Channel is very noisy and no			f(x) = 0.2, for $ x < 1$
	(B)	No information is received.		prob	ability distribution function :
	(A)	Channel is very noisy.	52.	Let	X be a random variable with
	trans	smission is 0.5, it indicates that:		(D)	421
48.	Whe	n probability of error during		(C)	121
	(D)	Bytes per symbol		(B)	542
		- •		(A)	17
	(C)	Bits per symbol		face	showing 4 dots is:
	(B)	Bytes		up is	proportional to n . The probability of
	(A)	Bits		prob	ability of a face with n dots showing
	is:		51.	Cons	sider a dice with the property that
47.	The	unit of average mutual information		(D)	Cannot be determined
	(D)	None of the above		(C)	ln 2
	(C)	Positive and Negative		(B)	0
	(B)	Negative		(A)	1
	(A)	Positive		inde	pendent, then I (x, y) is:

50. When X and Y are statistically

Self information should be:

46.

53.	Runs scored by batsman in 5 one day	57.	An event has two possible outcomes with				
	matches are 50, 70, 82, 93 and 20. The		probability $P_1 = 1/2$ and $P_2 = 1/64$. The rate of information with 16 outcomes per				
	standard deviation is						
	(A) 25.79		second is:				
	(B) 25.49		(A) (38/4) bits/sec				
	(C) 25.29 (D) 25.60		(B) (38/64) bits/sec				
	(D) 25.69						
54.	If E denotes the expectation the variance		(C) (38/2) bits/sec				
	of a random variable X is denoted as:		(D) (38/32) bits/sec				
	(A) $(E(X))^2$	58.	Lempel-Ziv algorithm is:				
	(B) $E(X^2) - (E(X))^2$		(A) Variable to fixed length algorithm				
	(C) $E(X^2)$		(B) Fixed to variable length algorithm				
	(D) 2E (X)		(C) Fixed to fixed length algorithm				
55.	The random variables X and Y have		(D) Variable to variable length				
	variances 0.2 and 0.5 respectively. Let		algorithm				
	Z = 5X - 2Y. The variance of Z is:	59.	A rate distortion function is a :				
	(A) 3	39.					
	(B) 4		(A) Concave function				
	(C) 5		(B) Convex function				
	(D) 7		(C) Increasing function				
56.	Let (X_1, X_2) be independent random		(D) None of the above				
	variables. X_1 has to mean 0 and	60.	The SNR value can be increased by				
	variance 1, while X_2 has mean 1 and		the number of levels.				
	variance 4. The mutual information		(A) Increasing				
	I $(X_1; X_2)$ between X_1 and X_2 in bits is :						
	(A) 2		(B) Decreasing				
	(B) 4		(C) Does not depend on				
	(C) 5		(D) None of the above				
	(D) 0						

(10)

Set-B

(Only for Rough Work)

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (C) (D) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।