Roll No	 				Question Booklet Number
O. M. R. Serial No.					

M. Sc. (Electronics) (Fourth Semester) EXAMINATION, July, 2022

(Elective Course)

ARTIFICIAL INTELLIGENCE

P	ape	er Co	de	
ELC	4	0	4	(G)

Questions Booklet Series

 \bigcap

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 60 questions. Examinee is required to answer any 50 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 50 questions are attempted by student, then the first attempted 50 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश:

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 60 प्रश्न हैं। परीक्षार्थी को किन्हीं 50 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 50 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 50 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा
 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण
 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या
 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी
 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ट पर)

(Only for Rough Work)

1.	Where does the degree of belief is	5.	What is meant by probability density
	applied ?		function?
	(A) Propositions		(A) Probability distributions
	(B) Literals		(B) Continuous variable
	(C) Variables		(C) Discrete variable
	(D) Statements		
2.	How many types of random variables are		(D) Probability distributions for
	available ?		continuous variables
	(A) 1	6.	The truth values of traditional set theory
	(B) 2		is and that of fuzzy set is
	(C) 3		
	(D) 4		(A) Either 0 or 1, between 0 and 1
3.	Which is the complete specification of		(B) Between 0 and 1, either 0 or 1
	the state of the world?		(C) Between 0 and 1, between 0 and 1
	(A) Atomic event		
	(B) Complex event		(D) Either 0 or 1, either 0 or 1
	(C) Simple event	7.	The room temperature is hot. Here the
	(D) None of the above		hot (use of linguistic variable is used) can
4.	Which variable cannot be written in		be represented by
	entire distribution as a table ?		(A) Fuzzy Set
	(A) Discrete		(B) Crisp Set
	(B) Continuous		-
	(C) Both Discrete and Continuous		(C) Fuzzy and Crisp Set
	(D) None of the above		(D) None of the above

(3)

Set-D

8.	The values of the set membership is	12.	is/are the way(s) to represent
	represented by:		uncertainty.
	(A) Discrete set		(A) Fuzzy logic
	(B) Degree of truth		(B) Probability
	(C) Probabilities		(C) Entropy
	(D) Both Degree of truth and		(D) All of the above
	Probabilities	13.	are algorithms that learn from
9.	Fuzzy set theory defines fuzzy operators.		their more complex environments (hence
	Choose the fuzzy operators from the		eco) to generalize, approximate and
	following:		simplify solution logic.
	(A) AND		(A) Fuzzy Relational DB
	(B) OR		(B) Ecorithms
	(C) NOT		(C) Fuzzy Set
	(D) All of the above		(D) None of the above
10.	There are also other operators, more	14.	In LISP, the function returns t
	linguistic in nature, is called		if <integer> is even and nil</integer>
	that can be applied to		otherwise
	fuzzy set theory.		(A) (evenp <integer>)</integer>
	(A) Hedges		(B) (even <integer>)</integer>
	(B) Lingual Variable		(C) (numeven <integer>)</integer>
	(C) Fuzzy Variable		(D) (numevenp <integer>)</integer>
	(D) None of the above	15.	Which of the following is an advantage
11.	Fuzzy logic is usually represented as:		of using an expert system development
	(A) IF-THEN-ELSE rules		tool?
	(B) IF-THEN rules		(A) Imposed structure
	(C) Both IF-THEN-ELSE rules and		(B) Knowledge engineering assistance
	IF-THEN rules		(C) Rapid prototyping
	(D) None of the above		(D) All of the above

(4)

Set-D

19. In how many categories process of 16. Artificial Intelligence is about _____. Artificial Intelligence is categorized? Playing a game on computer (A) (A) categorized into 5 categories Making a machine intelligent (B) (B) processes are categorized based on (C) Programming on machine with the input provided your own intelligence (C) categorized into 3 categories (D) Putting vour intelligence in process is not categorized (D) machine 20. Which of the following is a component 17. What is the Artificial goal of of Artificial Intelligence? Intelligence? (A) Learning To solve artificial problems (B) Training (A) (C) Designing (B) To extract scientific causes **Puzzling** (D) (C) To explain various sorts of intelligence 21. Which of the following is not a type of Artificial Intelligence agent? To solve real-world problems Learning AI agent (A) 18. Which of the following is an application (B) Goal-based AI agent of Artificial Intelligence? (C) Simple reflex AI agent (A) It helps to exploit vulnerabilities to (D) Unity-based AI agent secure the firm. 22. Which of the following is not the (B) Language understanding and commonly used programming language problem-solving (Text analytics for Artificial Intelligence? and NLP). Perl (A) Easy to create a website. (C) (B) Java It helps to deploy applications on (D) **PROLOG** (C) the cloud. (D) LISP

ELC-404(G)	(6)	Set-D
(D) 1		variable and parameter
(C) 2		(D) Representing your problem with
(B) 3		(C) Problem you design
(A) 4		(B) Your definition to a problem
Intelligence.		(A) The whole problem
method are there in Artificial	30.	What is state space ?
26 number of informed search	20	
(D) AI system		(D) None of the above
(C) Agents		(C) Both of the above
(B) Sensor		action will get it to the goal state
(A) Actuators		(B) To find out which sequence of
the outputs themselves ?		to goal
input from the humans but can interpret		(A) Solve the given problem and reach
25. Which of the following machine requires		solving agent ?
(D) DBMS	29.	What is the main task of a problem-
(C) Chatbots		(D) All of the above
(B) Face recognition system		(C) Weak approach
(A) LIDAR		(B) Strong approach
application of artificial intelligence?		(A) Applied approach
24. Which of the following is not an		approaches to Artificial Intelligence ?
(D) system known as SIMD	28.	Which of the following are the
(C) program known as SHRDLU		(D) No proposition symbols
(B) system known as STUDENT		(C) 2 proposition symbols
(A) program known as BACON		(B) 1 proposition symbol
Bobrow?		(A) 3 proposition symbols
Intelligence system developed by Daniel		in AI are

23. What is the name of the Artificial 27. The total number of proposition symbols

31.	A search algorithm takes as	34.	which is the best way to go for game	
	an input and returns as an		playing problem ?	
	output.		(A) Linear approach	
	(A) Input, output		(B) Heuristic approach (some knowledge is stored)	
	(B) Problem, solution		(C) Random approach	
	(C) Solution, problem		(D) An optimal approach	
	(D) Parameters, sequence of actions	35.	Knowledge and reasoning also play a	
32.	The is a touring problem in		crucial role in dealing withenvironment.	
	which each city must be visited exactly		(A) Completely Observable	
	once. The aim is to find the shortest tour.		(B) Partially Observable	
	(A) Finding short path between a		(C) Neither Completely nor Partially	
	source and a destination		Observable	
	(B) Travelling Salesman problem		(D) Only Completely and Partially	
	(C) Map coloring problem		Observable	
	(D) Depth first search traversal on a	36.	Treatment chosen by doctor for a patient	
	given map represented as a graph		for a disease is based on	
			(A) Only current symptoms	
33.	A production rule consists of		(B) Current symptoms plus some	
	(A) A set of rule		knowledge from the text-books	
	(B) A sequence of steps		(C) Current symptoms plus some	
	(C) Set of rule and sequence of steps		knowledge from the text-books plus experience	
	(D) Arbitrary representation to problem		(D) All of the above	

(7)

Set-D

37.	'α	= β ' (to mean that the sentence α	40.	First Order Logic is also known as
	entai	ils the sentence β) if and only if, in		·
	ever	y model in which α is β is		(A) First Order Predicate Calculus
	also			(B) Quantification Theory
	(A)	true, true		(C) Lower Order Calculus
	(B)	true, false		(D) All of the above
	(C)	false, true	41.	Ais used to demonstrate, on
	(D)	false, false	71.	a purely syntactic basis, that one formula
38.	Infer	rence algorithm is complete only if		is a logical consequence of another
				formula.
	(A)	It can derive any sentence.		(A) Deductive Systems
	(B)	It can derive any sentence that is an		(B) Inductive Systems
		entailed version.		(C) Reasoning with Knowledge Based
	(C)	It is truth preserving.		Systems
	(D)	It can derive any sentence that is an		(D) Search Based Systems
		entailed version and it is truth		(2) Some Lusco Systems
		preserving.	42.	What is the process of capturing the
39.	The	statement comprising the limitations		inference process as a single inference
	of F0	OL is/are		rule ?
	(A)	Expressiveness		(A) Ponens
	(B)	Formalizing Natural Languages		(B) Clauses
	(C)	Many-sorted Logic		(C) Generalized Modus Ponens
	(D)	All of the above		(D) Variables

(8)

Set-D

ELC-	-404(G	6) (9)			Set-D
	(D)	All of the above		(D)	Neither (a) nor (b) is true.
	(C)	Datamart			depending upon situation.
	(B)	Knowledge base		(C)	Either (a) or (b) can be true
	(A)	Database		(B)	(b) is true.
	func	tion ?		(A)	(a) is true.
	to	implement store and fetch		Choo	ose the correct option :
45.	Whe	re did all the facts are stored			absolutely necessary.
	(D)	Unify algorithm			of the behaviour are not set until
	(C)	Depth-first search		(b)	Relationships between the actions
	(B)	Hill-climbing search			actions.
	(A)	Inference			of the behaviour are set prior to the
	retur	ns a unifier ?		(a)	Relationships between the actions
44.	Whi	ch algorithm takes two sentences and	47.	In pa	rtial order plan :
	(D)	None of the above		(D)	None of the above
	(C)	Inference process		(C)	Hashes
	(B)	Unification		(B)	Stack
	(A)	Lifting		(A)	Lists
	expr	ession looks identical ?		index	xing?
43.	Whi	ch process makes different logical	46.	How	the buckets are stored in predicate

48.	Following is/are the component(s) of the	51.	Uncertainty arises in the Wumpus world
	partial order planning:		because the agent's sensors give
	(A) Bindings		only
	(B) Goal		(A) Full and Global Information
	(C) Causal links		(B) Partial and Global Information
	(D) All of the above		(C) Partial and Local Information
49.	A plan that describe how to take actions		(D) Full and Local Information
	in levels of increasing refinement and	52.	Which data structure is used to give
	specificity is		better heuristic estimates ?
	(A) Problem solving		(A) Forwards state-space
	(B) Planning		(B) Backward state-space
	(C) Non-hierarchical plan		(b) Backward state-space
	(D) Hierarchical plan		(C) Planning graph algorithm
			(D) None of the above
50.	A constructive approach in which no	50	
	commitment is made unless it is	53.	Which is used to extract solution directly
	necessary to do so, is		from the planning graph?
	(A) Least commitment approach		(A) Planning algorithm
	(B) Most commitment approach		(B) Graph plan
	(C) Non-linear planning		(C) Hill-climbing search
	(D) Opportunistic planning		(D) All of the above

(10)

Set-D

54.	What are present in the planning	58.	What is called inconsistent
	graph ?		support ?
	(A) Sequence of levels		(A) If two literals are not negation of
	(B) Literals		other.
	(C) Variables(D) Heuristic estimates		(B) If two literals are negation of other.
55.	What is the starting level of planning		(C) Mutually exclusive.
	graph?		(D) None of the above
	(A) Level 3	59.	What is used for probability theory
	(B) Level 2		sequences?
	(C) Level 1		(A) Conditional logic
	(D) Level 0		(B) Logic
56.	What are present in each level of		
	planning graph ?		(C) Extension of propositional logic
	(A) Literals		(D) None of the above
	(B) Actions	60.	Where does the dependance of
	(C) Variables		experience is reflected in prior
	(D) Both Literals and Actions		probability sentences ?
57.	What is meant by persistence actions?		
	(A) Allow a literal to remain false		(A) Syntactic distinction
	(B) Allow a literal to remain true		(B) Semantic distinction
	(C) Allow a literal to remain false and		(C) Both Syntactic and Semantic
	true		distinction
	(D) None of the above		(D) None of the above

(11)

Set-D

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (C) (D) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।