Roll No	 				Question Booklet Number
O. M. R. Serial No.					

M. Sc. (Biochemistry) (Fourth Semester) EXAMINATION, July, 2022

BIOINFORMATICS

Paper Code					
BCH	4	0	0	2	

Questions Booklet Series

A

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 60 questions. Examinee is required to answer any 50 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 50 questions are attempted by student, then the first attempted 50 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 60 प्रश्न हैं। परीक्षार्थी को किन्हीं 50 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 50 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 50 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा
 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण
 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या
 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी
 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

- 1. Bioinformatics deals with:
 - (A) Application of statistical tools for analysis of biological data
 - (B) Application of information technology tools for analysis of biological data
 - (C) Application of biophysical techniques for analysis of biological data
 - (D) Entrepreneurial application of biological research
- 2. Degeneracy of genetic code explains:
 - (A) Each amino acid is coded by multiple codons
 - (B) Each codon codes for single amino acid
 - (C) Triplet codon is without any gaps
 - (D) Genetic code is universal
- 3. Identify an operating system:
 - (A) Windows 10
 - (B) Linux
 - (C) Unix
 - (D) All of the above

- 4. The extension used for file transfer protocol:
 - (A) .doc
 - (B) .xls
 - (C) .ftp
 - (D) .ptx
- 5. NCBI stands for:
 - (A) National Center for Bioinformatics
 - (B) National Center for Biotechnology

 Information
 - (C) National Center for Biology

 Information
 - (D) National Center for Biomedical

 Information
- 6. Which of the following is useful for construction of phylogenetic tree ?
 - (A) Dendrogram
 - (B) Cladogram
 - (C) Phylogram
 - (D) All of the above

BCH-4002 (3) Set-A

- 7. Which of the following is true about Proteomics?
 - (A) Proteomics has enabled the identification of ever increasing numbers of protein.
 - (B) Proteomics generally refers to the large-scale experimental analysis of proteins and proteomes.
 - (C) Proteome is the entire set of proteins that is produced or modified by an organism or system.
 - (D) All of the above
- 8. Regarding structural proteomics which of the following is true ?
 - (A) Structure domain is an element of proteins overall structure and often folds independent of rest of protein chain.
 - (B) Ribbon and Cartoon Diagram of protein structure gives information about various secondary structures that occurs in protein.
 - (C) Structure proteomics include the analysis of protein structure at large scale.
 - (D) All of the above

- 9. The database useful for homology modelling of proteins :
 - (A) BLAST
 - (B) EMBL
 - (C) SwissMODEL
 - (D) DDBJ
- 10. Which of the following statements is true?
 - (A) Multiple Sequence Alignment(MSA) is useful to know the conserved regions of genes.
 - (B) Alignment can be done for both genes and protein sequences.
 - (C) Multalin is useful in performing the sequence alignment.
 - (D) All of the above
- 11. Central dogma of molecular biology refers to:
 - (A) DNA $\rightarrow c$ DNA \rightarrow Protein
 - (B) DNA \rightarrow RNA \rightarrow Protein
 - (C) Protein \rightarrow RNA \rightarrow DNA
 - (D) $RNA \rightarrow DNA \rightarrow Protein$

12.	The	software tool used for sequence	16.	The sequence alignment tool provided by
	align	ment:		NCBI is:
	(A)	C++		(A) Chime
	(B)	PRISM		(B) BLAST
	(C)	HTML		(C) Multalin
	(D)	CLUSTALW		(D) CLUSTALW
13.	BLA	STx is useful for:	17.	The procedure of aligning many
	(A)	Translated nucleotide to protein		sequences simultaneously:
	(B)	Protein to translated nucleotide		(A) Multiple Sequence Alignment
	(C)	Protein to protein Nucleotide to nucleotide		(B) Pairwise alignment
	(D)			(C) Global alignment
14.	FAS'	TA format is used to represent :		(D) Local alignment
	(A)	Nucleotide or amino acid sequences in standard format	18.	Nucleotide sequence databases include :
	(B)	Diagrammatic representation of		(A) PDB
	(C)	protein structures Phylogenetic tree		(B) ExPASY
	(D)	Sugar moieties in a glycoprotein		(C) SWISSPROT
15.	All	are sequence alignment tools,		(D) GenBank
	exce	pt:	19.	SwissProt is:
	(A)	Rasmol		(A) Protein database
	(B)	BLAST		(B) Nucleotide database
	(C)	MultAlin		(C) UniProt consortium
	(D)	CLUSTAL W		(D) Both (A) and (C)

(5)

Set-A

BCH-4002

20. Incorrect statement for BLOSUM: 24. Transposons: (A) BLOSUM is substitution matrix can transfer genetic information Rely on substitution sequences (B) form one position to another (C) Rely on conserved sequences position in the genome. (D) Do not measure the evolutionary can operate through DNA or RNA (B) distance sequences. MEGA 7 is: 21. (C) are important factor for evolution. Molecular Evolutionary Genetics (A) All of the above (D) **Analysis** Creates dendrogram (B) 25. Which of the following tools is used to (C) Useful for phylogenetic find repetitive sequences? relationship Repbase (A) All of the above (D) **CENSOR** (B) 22. WWW is: (C) Dfam World Wide Web All of the above (D) World Wired Web World War Web (C) GCG software tool is useful for: 26. (D) World Wild Web (A) Analysis of gene and protein 23. CENSOR program is used to find: sequences (A) Multiple sequence alignment Performing GO annotation (B) Repetitive elements (B) (C) **Identifying SNPs** (C) **SNP**

Protein modelling

(D)

(D)

Analyzing repetitive sequences

	datab	ase?			(A)	DNA Data Bank of Japan
	(A)	To deposit and store data			(B)	DNA Database of Japan
	(B)	To retrieve data			(C)	DNA Domain Bank of Japan
	(C)	To analyse and interpret data			(D)	Data Domain Bank of Japan
	(D)	All of the above				
28.	Whic	ch of the following is a nucleotide		32.		t is the size limitation for email
	datab	ase ?			attacl	hment ?
	(A)	EMBL			(A)	25 MB
	(B)	Pfam			(B)	250 MB
	(C)	Swiss-Prot			(C)	500 MB
	(D)	Uni-Prot			(D)	1000 MB
29.	Whic	ch of the following databases is		33.	Profi	le analysis is used for :
	usefu	l for whole genome sequences?			(A)	Multiple sequence alignment
	(A)	Ensembl			(B)	Protein modelling
	(B)	Expasy			(C)	Structure prediction
	(C)	SwillProt			(D)	Sequence retrieval
	(D)	UniProt		2.4	D 11	
30.	How	many different open reading frames		34.	PubN	Med is :
	are p	ossible in an mRNA strand?			(A)	A search engine for journal
	(A)	2				references
	(B)	3			(B)	Repository of protein sequences
	(C)	4			(C)	Database of nucleotide sequences
	(D)	5			(D)	None of the above
всн-	-4002		(7)			Set-A

27. Which of the following is a feature of 31. Expand DDBJ:

35.	The	following tool(s) will be helpful for	39.	Туре	es of	molecula	r markers
	prepa	aring virtual library :		inclu	ıde :		
	(A)	Google scholar		(A)	VNTR		
	(B)	PubMed		(B)	RAPD		
	(C)	Science Direct		(C)	RFLP		
	(D)	All of the above				ah awa	
36.	Swis	sProt is operated by :		(D)	All of the	e above	
	(A)	University of Geneva	40.	Expa	and RAPD	:	
	(B)	University of California		(A)	Rapid	Amplific	eation of
	(C)	University of Stanford			Polymorp	ohic DNA	
	(D)	NCBI		(B)	Random	Amplified	Polymorphic
37.	Whic	ch of the following is an example for			DNA		
	analy	ysing structure of macromolecules?		(C)	Regular	Amplified	Polymorphic
	(A)	DDBJ			DNA		
	(B)	PDB		(D)	Rare Am	plification of	f Polymorphic
	(C)	NCBI			DNA		
	(D)	None of the above	41.	Moth	ands of pro	taomia analy	vois includo :
38.	Journ	nal search can be done using:	41.	Men	ious of pro	neomic analy	ysis include :
	(A)	Science direct		(A)	iTRAQ		
	(B)	Pubmed		(B)	2-DE		
	(C)	Web of science		(C)	Both (A)	and (B)	
	(D)	All of the above		(D)	None of t	the above	

(8)

Set-A

BCH-4002

всн-	-4002	(9)			Set-A
	(D)	:		(D)	Ochre
	(C)	=		(C)	Opal
	(B)	>		, ,	
	(A)			(B)	Umbel
45.	FAS	ΓA sequences are preceded with:		(A)	Amber
	(D)	M		codo	n ?
	(C)	K	49.	Whi	ch of these is incorrect for stop
	, ,	Y			
		R		(D)	Peptide fragments
•		ated by the symbol :		(C)	Transposons
44.	Acco	ording to IUPAC, purines are		(B)	Primer sequences
	(D)	Analysing protein-ligand interaction		(A)	Molecular markers
		protein	48.	Ac/I	Os elements are:
	(C)	Analysing quaternary structure of		(D)	Trone of the above
		interaction		(D)	None of the above
	(B)	Analysing protein-protein		(C)	(A) and (B) are true
		acids in a polypeptide		(B)	Located at Germany
	(A)	Analysing the angles of amino			Laboratory
43.	Rama	achandran plot is used for:		(A)	European Molecular Biology
	(D)	None of the above	47.	EME	BL is:
		Absolute Quantitation		(D)	None of the above
	(C)	Isotopic Tags for Relative and		(C)	Heat maps
		Absolute Quantitation		, ,	•
	(B)	Isometric Tags for Relative and		(B)	Secondary structures
		Absolute Quantitation		(A)	Phylogenetic tree
	(A)	Isobaric Tags for Relative and		of:	
42.	iTR <i>A</i>	AQ stands for :	46.	UPG	MA protocol is used for generation

50.	The	statistical packages among the		(B)	It provides a series of forms that	
	follo	wing are:			can be filled out to retrieve a DNA	
	(A)	SPSS			or protein sequence.	
	(B)	Sigma		(C)	It is a resource prepared only by	
	(C)	R			the staff of the National Centre for	
	(D)	All of the above			Biotechnology Information.	
51.	Text	based format to represent a		(D)	One straightforward way to access	
	nucle	nucleotide or amino acid is			the sequence databases is through	
	(A)	BLAST			ENTREZ.	
	(B)	FASTA 5	53.	Whic	ch of the following is not the	
	(C)	Multiple sequence alignment		objec	ctive to perform sequence	
	(D)	PROSITE		comp	parison?	
52.	Whi	ch of the following is incorrect about		(A)	To find the common motifs present	
32.		REZ ?			in both sequences	
	(A)				To study the physical properties of	
	()	can be filled out to retrieve a			molecules	
		Medline reference related to the		(C)	To study evolutionary relationships	
		molecular biology sequence		(D)	To observe patterns of	
		databases.			conservation	

(10)

Set-A

BCH-4002

- 54. Which of the following is untrue about homology modelling?
 - (A) It doesn't involve the evolutionary distances anywhere.
 - (B) The principle behind it is that if two proteins share a high enough sequence similarity, they are likely to have very similar three-dimensional structures.
 - (C) Homology modelling predicts protein structures based on sequence homology with known structures.
 - (D) It is also known as comparative modelling.
- 55. The process of finding the relative location of genes on a chromosome is called:
 - (A) Gene tracking
 - (B) Genome walking
 - (C) Genome mapping
 - (D) Chromosome walking
- 56. The term 'in vitro' refers to:
 - (A) Within the lab
 - (B) Within the cell
 - (C) Within the glass
 - (D) Outside the glass

- 57. The laboratory work using computers and associated with web-based analysis is referred to as:
 - (A) In silico
 - (B) Dry lab
 - (C) Wet lab
 - (D) Pure lab
- 58. Analysing or comparing entire genome of organism:
 - (A) Genomics
 - (B) Proteomics
 - (C) Pharmacogenomics
 - (D) Metabalomics
- 59. Which of the following is a mail client?
 - (A) PINE
 - (B) Google
 - (C) Eudora
 - (D) All of the above
- 60. Types of FTP include:
 - (A) FTPES
 - (B) FTPS
 - (C) SFTP
 - (D) All of the above

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q.1 (A) (C) (D)
Q.2 (A) (B) (C) (D)
Q.3 (A) (C) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।