Roll No	 				Question Booklet Number
O. M. R. Serial No.					

B. Com. (Honors) (Fourth Semester) EXAMINATION, July, 2022

OPERATION RESEARCH

Paper	Cod	e		
BCOMH	4	0	0	3

Questions Booklet Series

B

[Maximum Marks : 100

Time: 1:30 Hours]

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 100 questions. Examinee is required to answer any 75 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 75 questions are attempted by student, then the first attempted 75 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश:

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को किन्हीं 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 75 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 75 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा
 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण
 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या
 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी
 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Remaining instructions on the last page)

1.	The number of time estimates involved	5.	Mathematical model of linear
	in Program Evaluation Review		programming problem is important
	Technique problem is		because
	(A) 1		(A) it helps in converting the verbal
	(B) 2		description and numerical data into
	(C) 3		mathematical expression.
	(D) 4		(B) decision makers prefer to work
2.	The assignment problem is always a		with formal models.
	matrix.		(C) it captures the relevant relationship
	(A) circle		among decision factors.
	(B) square		(D) it enables the use of algebraic
	(C) rectangle		technique.
	(D) triangle	6.	When the total demand is equal to
3.	The slack variables indicate		supply, then the transportation problem is
	(A) excess resource available.		said to be
	(B) shortage of resource		(A) balanced
	(C) nil resource		(B) unbalanced
	(D) idle resource		(C) maximization
4.	If the net evaluation corresponding to		(D) minimization
	any non-basic variable is zero, it is an	7.	For finding an optimum solution in
	indication of the existence of an		transportation problem method
	·		is used.
	(A) initial basic feasible solution		(A) Simplex
	(B) optimum basic feasible solution		(B) Big-M
	(C) optimum solution		(C) Modi
	(D) alternate optimum solution		(D) Hungarian

8.	Any solution to a Linear Programming	11.	The dummy source or destination in
	Problem which also satisfies the non-		a transportation problem is added
	negative notifications of the problem		to
	has		(A) satisfy rim conditions
	(A) solution		(B) prevent solution from becoming
	(B) basic solution		degenerate
	(C) basic feasible solution		(C) ensure that total cost does not
	(D) feasible solution		exceed a limit
9.	A Linear Programming Problem have		(D) the solution not be degenerate
	optimal solution.	12.	The problem of replacement is felt when
	(A) 1		job performing units fail
	(B) 2		(A) suddenly and gradually
	(C) more than 1		(B) gradually
	(D) more than 2		(C) suddenly
10.	If an artificial variable is present in the		(D) neither gradually nor suddenly
	basic variable column of optimal simplex	13.	A feasible solution of an Linear
	table, then the problem has		Programming Problem that optimizes the
	solution.		objective function is called
	(A) alternative		(A) basic feasible solution
	(B) no		(B) optimum solution
	(C) bounded		(C) feasible solution
	(D) infeasible		(D) solution

14.	All the basis for a transportation problem	18.	The coefficient of an artificial variable in
	is		the objective function of penalty method
	(A) square		are always assumed to be:
	(B) rectangle		(A) 0
	(C) diagonal		(B) 1
	(D) triangle		(C) M
15.	In the transportation table, empty cells		(D) –M
	will be called	19.	The process that performs the services to
	(A) occupied		the customer is known as:
	(B) unoccupied		(A) queue
	(C) no		(B) service channel
	(D) finite		(C) customers
	(b) Time		(D) server
16.	is a completely degenerate	20.	A queuing system is said to be a
	form of a transportation problem.		when its operating characteristic are
	(A) Transportation Problem		dependent upon time.
	(B) Assignment Problem		(A) pure birth model
	(C) Travelling Salesman Problem		(B) pure death model
	(D) Replacement Problem		(C) transient state
17.	The linear function to be maximized or		(D) steady state
	minimized is called function.	21.	Slack is also known as
	(A) injective		(A) float
	(B) surjective		(B) event
	(C) bijective		(C) activity
	(D) optimal		(D) path

22.	What type of distribution does a time	26.	A degenerate	solution is one that:
	follow in program evaluation review technique model ?		(A) gives an	n optimum solution to the
	(A) Poisson		Linear P	Programming Problem
	(B) Exponential		(B) gives ze	ero value to one or more of
	(C) Normal			c variables
	(D) Chi-square		une ousi	, and a second
23.	A activity in a network diagram is said to		(C) yields	more than one-way to
	be if the delay in its start		achieve	the objective
	will further delay the project completion		(D) makes	use of all the available
	time.		resource	es
	(A) critical			
	(B) critical path	27.	Graphical met	thod of linear programming
	(C) crash		is useful whe	en the number of decision
	(D) non-critical			in the number of decision
24.	The total opportunity cost matrix is		variable are :	
	obtained by doing		(A) 1	
	(A) row operation on row opportunity cost matrix		(B) 2	
	(B) column operation on row		(C) 3	
	opportunity cost matrix		(D) 4	
	(C) column operation on column			
	opportunity cost matrix	28.	In the optimal	simplex table, $Z_j - C_j = 0$
	(D) None of the above		value indicates	s
25.	The Simplex method is also called		(A) alternati	ve solution
	the		(11) anternati	ve solution
	(A) Dual simplex method		(B) bounded	l solution
	(B) Modi method		(C) infeasible	le solution
	(C) Simplex technique		, ,	
	(D) Big-M method		(D) unbound	led solution

(5)

Set-B

BCOMH-4003

29.	If primal linear programming problem	32.	The shortest time in the PERT is called
	has a finite solution, then dual linear		time.
	programming problem should		(A) expected
	·		(B) pessimistic
	(A) have optimal solution		(C) optimistic
	(B) satisfy the Rim condition		(D) most likely
	(C) have degenerate solution	33.	Which of these specifies the objective or
	(D) have non-degenerate solution		goal of solving the LPP ?
30.	While solving an assignment problem, an		(A) Objective function
	activity is assigned to a resource through		(B) Decision variables
	a square with zero opportunity cost		(C) Constraints
	because the objective is to		(D) Opportunity cost
	(A) minimize total cost of assignment	34.	In linear programming, unbounded
	(B) reduce the cost of assignment to		solution means solution :
	zero		(A) infeasible
	C) reduce the cost of that particular		(B) infinite
	assignment to zero		(C) unique
	(D) reduce total cost of assignment		(D) degenerate
31.	The longest path in the network diagram	35.	The intersection value of key column and
	is called		key row is called:
	(A) head path		(A) vital element
	(B) subpath		(B) important element
	(C) critical path		(C) basic element
	(D) subcritical path		(D) key element

36.	The variable added to the LHS of a less	39.	The time during which a machine
	than or equal to constraint to convert it		remains waiting or vacant in sequencing
	into equality is called variable.		problem is called time.
	(A) surplus		(A) processing
	(B) artificial		(B) waiting
			(C) free
	(C) slack		(D) idle
	(D) additional	40.	In linear programming represents
37.	To find initial feasible solution of a		mathematical equation of the limitations
	transportation problem the method which		imposed by the problem:
	starts allocation from the lowest cost is		(A) objective function
	called method.		(B) decision variables
	(A) Vogel's approximation		(C) constraints
			(D) opportunity cost
	(B) nwcr	41.	The outgoing variable row in the simplex
	(C) lcm		algorithm is called:
	(D) Modi		(A) outgoing row
38.	Which of the following considers		(B) key row
	difference between two least costs for		(C) interchanging row
	each row and column while finding		(D) basic row
	initial basic feasible solution in	42.	In simplex; a maximization problem is
	transportation?		optimsi when all Della J, i.e. $C_j - Z_j$
	(A) yarn		values are:
	(B) nwcr		(A) either zero or positive
	(C) Modi		(B) either zero or negative
			(C) only positive
	(D) lcm		(D) only negative

43.	The participants in s game are called:	47.	Operations Research (OR), which is a
	(A) invitees		very powerful tool for
	(B) players		(A) Research
	(C) contestants		(B) Decision-making
	(D) clients		(C) Operations
44.	The outcome of the interaction of		(D) None of the above
	selected strategies of opponents in a	48.	The term 'Operations Research' was
	game is called:		coined in the year
	(A) income		(A) 1950
	(B) profit		(B) 1940
	(C) payoff		(C) 1978
	(D) gains		(D) 1960
45.	A situation in a game, where in the	49.	This innovative science of Operations
	payoff matrix, maximum of row is equal	12.	Research was discovered during
	to minimax of column is called:		_
	(A) centre point		(A) Civil War(B) World War I
	(B) saddle point		· ,
	(C) main point		(C) World War II(D) Industrial Revolution
	(D) equal point		(D) Industrial Revolution
		50.	Operations Research was known as an
46.	Operations Research techniques are in		ability to win a war without really going
	nature :		into a
	(A) qualitative		(A) Battlefield
	(B) quantitative		(B) Fighting
	(C) judgmental		(C) War
	(D) subjective		(D) Both (A) and (B)

51.	Operations Research cannot give perfect	55.	are called mathematical
	to problems.		models.
	(A) Answers		(A) Iconic Models
	(B) Solutions		(B) Analogue Models
	(C) Both (A) and (B)		(C) Symbolic Models
	(D) Decisions		(D) None of the above
52.	In models, everything is	56.	The objective functions and constraints
	defined and the results are certain.		are linear relationship between
	(A) Deterministic		(A) Variables
	(B) Probabilistic		(B) Constraints
	(C) Both (A) and (B)		(C) Functions
			(D) All of the above
	(D) None of the above	57.	All the parameters in the linear
53.	Which models are obtained by enlarging		programming model are assumed to
	or reducing the size of the item?		be
	(A) Iconic Models		(A) Variables
	(B) Analogue Models		(B) Constraints
	(C) Symbolic Models		(C) Functions
	(D) None of the above		(D) None of the above
54.	are the representation of	58.	Graphical method can be applied to solve
	-		a LPP when there are only
	reality.		variable.
	(A) Models		(A) One
	(B) Phases		(B) More than one
	(C) Both (A) and (B)		(C) Two
	(D) None of the above		(D) Three

59.	Any column or row of a simplex table is	63.	The word 'Linear' means that the
	called a		relationships are represented by
	(A) Vector		,
	(B) Key column		
	(C) Key row		(A) Diagonal lines
	(D) None of the above		(B) Curved lines
60.	As for maximization in assignment		(C) Straight lines
	problem, the objective is to maximize the		(D) Slanting lines
	(A) Profit	64.	The word 'programming' means taking
	(B) Optimization	01.	
	(C) Cost		decisions
	(D) None of the above		(A) Systematically
61.	If there are more than one optimum		(B) Rapidly
	solution for the decision variable the		(C) Slowly
	solution is		(D) Instantly
	(A) Infeasible		(D) Histantiy
	(B) Unbounded	65.	If the total supply is less than the total
	(C) Alternative		demand, a dummy source (row) is
	(D) None of the above		included in the cost matrix
62.	For analyzing the problem, decision		with
	makers should normally study:		(A) Dummy Demand
	(A) Its qualitative aspects		(B) Dummy Supply
	(B) Its quantitative aspects		(b) Dunning Suppry
	(C) Both (A) and (B)		(C) Zero Cost
	(D) Neither (A) nor (B)		(D) Both (A) and (B)

66.	Once the initial basic feasible solution	69.	Any feasible solution to a transportation
	has been computed, what is the next step		problem containing m origins and n
	in the problem ?		destinations is said to be
	1		(A) Independent
	(A) VAM		(B) Degenerate
	(B) Modified distribution method		(C) Non-degenerate
			(D) Both (A) and (B)
	(C) Optimality test	70.	An optimum solution is considered the
	(D) None of the above		among feasible solutions.
<i>c</i> 7	Outional relation is a familiar relation		(A) Worst
67.	Optimal solution is a feasible solution		(B) Best
	(not necessarily basic) which minimizes		(C) Ineffective
	the		(D) None of the above
	(A) Time taken	71.	All the constraints are expressed as
	(B) Partial cost		equations and the right hand side of each
	(b) Tartial Cost		constraint and all variables are non-
	(C) Total cost		negative is called
	(D) None of the above		(A) Canonical variable
			(B) Canonical form
68.	If demand is lesser than supply, then		(C) Canonical solution
	dummy demand node is added to make it		(D) Both (A) and (B)
	a	72.	What are the main questions before a
	(A) G' 1 11		production manager ?
	(A) Simple problem		(A) Which commodity/commodities to
	(B) Balanced problem		produce
	(C) Transportation problem		(B) In what quantities
			(C) By which process or processes
	(D) None of the above		(D) All of the above

всо	MH-40	003 (1	2)	Set-B
	(D)	None of the above		(D) no solution
	(C)	Decision Theory		(C) bounded
	(B)	Network Analysis		(B) feasible
	(A)	Game Theory		(A) infeasible
	risk a	and uncertainty?		solution is
	decis	ions under conditions of certainty,		simplex table is negative, then the
75.	Whic	ch theory concerns making sound	78.	If any value in XB column of final
	(D)	George V. Dantzig		objective function
	(C)	George B. Dante		(D) must optimize the value of the
	(B)	James B. Dantzig		feasible region
	(A)	George B. Dantzig		(C) must be a corner point of the
	Unite	ed States Air Force ?		constraints, only some of them
	comp	plicated procurement activities of the		(B) need not satisfy all of the
	the	purpose of scheduling the		the problem simultaneously
74.	Who	developed Linear Programming for		(A) must satisfy all the constraints of
	(D)	All of the above		programming problem
		alternatives constantly	77.	A feasible solution to a linear
	(C)	Helps in evaluating various		(D) Multidisciplinary
		context		(C) Collect essential data
	(B)	Provides decision within its limited		(B) Intuitive
		decision		(A) Scientific
	(A)	Mathematically provides the best		is

73. An optimization model:

76. Operations Research approach

/9.	For any primal problem and its	82.	To proceed with the Modified
	dual		Distribution method algorithm for
	(A) optimal value of objective function		solving an transportation problem, the
	is same		number of dummy allocations need to be
	(B) dual will have an optimal solution		added are
	iff primal does too		(A) <i>n</i>
	(C) primal will have an optimal		(B) $n-1$
	solution iff dual does too		(C) $2n-1$
	(D) both primal and dual cannot be		(D) $n-2$
	infeasible	83.	Select the correct statement :
80.	The difference between total float and		(A) EOQ is that quantity at which price
	head event slack is		paid by the buyer is minimum.
	(A) free float		(B) If annual demand doubles with all
	(B) independent float		other parameters remaining
	(C) interference float		constant, the Economic Order
	(D) linear float		Quantity is doubled.
31.	An optimal assignment requires that the	(C) Total ordering cost equals holding	
	maximum number of lines which can be		cost.
	drawn through squares with zero		(D) Stock out cost is never permitted.
	opportunity cost should be equal to the	84.	Service mechanism in a queuing system
	number of		is characterized by
	(A) rows or columns		(A) customers behavior
	(B) rows and columns		(B) servers behavior
	(C) rows + columns – 1		(C) customers in the system
	(D) rows – columns		(D) server in the system

BCOMH-4003 (1			Set-B
(D) sur	rplus variable		(D) finite
(C) sla	ack variable		(C) no
(B) op	portunity cost		(B) unoccupied
(A) sha	adow cost		(A) occupied
called	called		allocated in cell.
88. The	non-basic variables are		solution, a very small quantity is
(D) m	/ <i>n</i>	92.	To resolve degeneracy at the initial
, ,	-n		(D) finite
, ,	+ n		(C) no
(A) mr	1		(B) unoccupied
is	·		(A) occupied
constrair	nts in the dual problem		table will be called cell.
•	and m variables, then the number of	91.	The allocation cells in the transportation
87. If the pr	rimal problem has n constraints		(D) $m+n-1$
(D) fea	asible solution		(C) $m-n$
(C) ba	sic solution		(B) mn
(B) ob	jective function		(A) $m+n$
(A) co	functions to be maximized or minimized are called:		are
are calle			feasible if the numbers of allocations
			with m -sources and n -destinations is
86. In an	90 n an Linear Programming Problem	90.	The solution to a transportation problem
(D) ma	aximize total project duration		(D) pivot
` /	terruption and conflicts		(C) artificial
	nimize production delays,		(B) surplus
	nimize total project duration nimize toal project cost		(A) slack
			as
to			20

85. The objective of network analysis is 89. Key element is also

known

93.	The assignment algorithm was developed	97.	The customers of high priority are given
	by method.		service over the low priority customers
	(A) Hungarian		is
	(B) Vogel's		(A) Pre-emptive
	(C) Modi		(B) FIFO (C) LIFO
	(D) Traveling Salesman		(D) SIRO
94.	An assignment problem is a particular	98.	A queuing system is said to be a
95.	case of		when its operating
	(A) transportation problem		characteristic are independent upon time.
	(B) assignment problem		(A) pure birth model
	(C) travelling salesman problem		(B) pure death model
	(D) replacement problem		(C) transient state
	(b) replacement problem		(D) steady state
	The coefficient of slack\surplus variables	99.	An activity which does not consume
	in the objective function are always		neither any resource nor time is known
	assumed to be		as
	(A) 0		(A) predecessor activity
	(B) 1 (C) M		(B) successor activity
			(C) dummy activity
			(D) activity
	(D) -M	100.	The difference between total and free
96.	Using method, we can never		float is
	have an unbounded solution.		(A) total
	(A) Simplex		(B) free
	(B) Dual simplex		(C) independent
	(C) Big-M		(D) interference
	(D) Modi		

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q.1 (A) (C) (D)
Q.2 (A) (B) (C) (D)
Q.3 (A) (C) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।