Roll No					Question Booklet Number
O. M. R. Serial No.					

B. Sc. (Biotechnology) (Second Semester) EXAMINATION, July, 2022

GENE ORGANIZATION, EXPRESSION & REGULATION

			P	ape	r C	ode			
BBT	2	0	0	4	/	GE	0	2	(A)

Questions Booklet Series

C

Time: 1:30 Hours | [Maximum Marks: 100

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 100 questions. Examinee is required to answer any 75 questions in the OMR Answer-Sheet provided and not in the question booklet. If more than 75 questions are attempted by student, then the first attempted 75 questions will be considered for evaluation. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को किन्हीं 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। यदि छात्र द्वारा 75 से अधिक प्रश्नों को हल किया जाता है तो प्रारम्भिक हल किये हुए 75 उत्तरों को ही मूल्यांकन हेतु सम्मिलित किया जाएगा। सभी प्रश्नों के अंक समान हैं।
- उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ट पर)

(Only for Rough Work)

1.	Exception to universal genetic code is:	5.	Aminoacyl-tRNA synthetases help in
	(A) Mycoplasma		attachment of amino acid to:
	(B) Amoeba		(A) rRNA
	(C) Hydra		(B) mRNA
	(D) Virus		(C) tRNA
2.	The secondary structure of tRNA is:		(D) DNA
	(A) a crescent	6.	Ribosomes are absent in:
	(B) clover leaf		(A) macrophages
	(C) triangle		(B) leukocytes
	(D) helix		(C) platelets
3.	The following does not have		(D) RBCs
	synonymous codon:	7.	The A & P site of ribosomes bind to:
	(A) Serine		(A) amino acid
	(B) Arginine		(B) amino-acyl-tRNA
	(C) Methionine		(C) mRNA
	(D) Leucine		(D) tRNA
4.	Who of the following is not associated	8.	The peptide bond is formed only on
	with deduction of genetic code?		occupation of :
	(A) H. G. Khorana		(A) A site
	(B) Watson		(B) P site
	(C) Nirenberg		(C) Both A and P site
	(D) Ochoa		(D) Neither A nor P site

(3)

Set-C

9.	The	translation initiation complex in	12.	Enzymes of are clustered
	eukaı	ryotes contains:		together in a bacterial operon.
	(A)	methionine		(A) metabolic pathway
	(A)	methorine		(B) transcription
	(B)	leucine		(C) transfusion
	(C)	formyl-methionine		(D) transformation
	(D)	arginine	13.	When was the operation mechanism of a
				bacterial operon first elucidated?
10.	The	amino-acids are added to		(A) 1961
	polyp	peptide chain by:		(B) 1971
	(A)	termination factors		(C) 1981
	, ,			(D) 1991
	(B)	initiation factors	14.	The lac operon consists of
	(C)	elongation factors		structural genes.
	(D)	GTP		(A) 4
1.1	æ.			(B) 1
11.	The	bond formed between carboxyl		(C) 3
	group	o at P site and aminoacyl-tRNA at A		(D) 2
	site is	s called :	15.	The number of histones in the core of a
	(A)	hydrogen bond		nucleosome is:
	(B)	peptide bond		(A) 4
				(B) 1
	(C)	phosphate bond		(C) 3
	(D)	sulphide bond		(D) 2

(4)

Set-C

16.	RNA	interference helps in :	19.	The expression of structural genes occurs
	(A)	cell proliferation		when operator binds to:
	(B)	cell defence		(A) repressor
	(C)	cell differentiation		(B) inducer
	(D)	micropropagation		(C) promoter
17.	Gene	es essentials for cell function		(D) None of the above
	are:		20.	Operon model was proposed by:
	(A)	inducible genes		(A) Hershey and Chase
	(B)	tissue-specific genes		(B) Meselson and Stahl
	(C)	house-keeping genes		(C) Watson and Crick
	(D)	promoter genes		(D) Jacob and Monad
18.	The	structural genes of lac		
	opero	on encode enzymes for breakdown	21.	Initiation of transcription is prevented if
	of:			promoter sequences fall in:
	(A)	Fructose		(A) introns
	(B)	Galactose		(B) linker DNA
	(C)	Lactose		(C) nucleosomes
	(D)	Sucrose		(D) split genes

(5)

Set-C

22.	The enzyme Dicer creates:	26.	The enzyme involved in light induced
	(A) siRNAs		DNA repair mechanism:
	(B) rRNA		(A) photoligase
	(C) tRNA		(1) photoliguse
	(D) mRNA		(B) photolyase
23.	Transition is a change from:		(C) DNA glycosylase
	$(A) A \rightarrow G$		(D) All of the above
	$(B) A \to C$	27.	The first base sequence of tRNA was
	(C) $G \rightarrow C$	21.	The first base sequence of third was
	(D) $A \rightarrow T$		reported by:
24.	Which of the following dimer formation		(A) H. G. Khorana
	is more common ?		(B) R Holley
	(A) Thymidine dimer		(C) Nirenberg
	(B) Cytidine dimer		(D) Ochoa
	(C) Both (A) and (B)		
	(D) None of the above	28.	The enzyme which initiates base excision
25.	Dimer repair mechanism includes:		repair mechanism:
	(A) Excision		(A) photolyase
	(B) Photoactivation		(B) DNA glycosylase
	(C) Recombination repair		(C) DNA polymerase
	(D) All of the above		(D) RNA polymerase

(6)

Set-C

29.	wno	proposed holiday model for	32.	W nic	ch of the following is not a function
	hom	ologous recombination ?		of re	verse transcriptase ?
	(A)	Govind Khorana		(A)	RNA dependent DNA polymerase
	, ,			(B)	DNA dependent DNA polymerase
	(B)	Louis Pasteur		(C)	RNase H
	(C)	Robin Holiday		(D)	Exonuclease
	(D)	Niels Bohr	33.	In trp	p operon the co-repressor is:
30.	Wha	t is the other name of DSB repair		(A)	tryptophan
	path	way ?		(B)	lactose
	(A)	D. DAD wetterer		(C)	glucose
	(A)	RecBAD pathway		(D)	β -galactoside
	(B)	RecBCD pathway	34.	The	operon consists of:
	(C)	RecABD pathway		(A)	operator and structural genes
	(D)	RecDCB pathway		(B)	operator, regulator, repressor
31.	Wha	t is resolution?		(C)	promoter and all of the above
	<i>(</i> 1 <i>)</i>			(D)	only structural genes
	(A)	Cleavage of holiday junction	35.	In la	ac operon system lac gene z codes
	(B)	Regeneration of duplex DNA		for:	
		molecule		(A)	permease
	(C)	Exchange of DNA fragments		(B)	repressor
	(D)	Heterochromatin structure		(C)	transacetylase
		formation		(D)	3-galactosidase

(7)

Set-C

36.	Regu	lation of the lac operon by repressor	40.	Trans	scription takes place in:
	is ref	erred to as:		(A)	cytoplasm
	(A)	positive		(B)	nucleus
	(B)	negative		(C)	matrix
	(C)	feedback		(D)	cytosol
	(D)	None of the above		, ,	•
37.	Regu	llatory genes are:	41.	Sequ	ence-specific DNA-binding proteins
	(A)	A) code for repressor proteins		gene	rally interact with major group of:
	(B)	transcribed continuously		(A)	B-DNA
	(C)	not contained in the operon they		(B)	A-DNA
		control		(C)	Z-DNA
	(D)	All of the above		(D)	C-DNA
38.	An a	antibiotic that inhibits translation in	42.	Struc	etural proteins organize the DNA
	both	eukaryotes and prokaryotes :		into a	a compact structure called:
	(A)	tetracycline		(A)	chromosomes
	(B)	actinomycin D		(B)	chromatin
	(C)	chloromycetin		(C)	ribosomes
	(D)	puromycin		(D)	organelles
39.	RNA	polymerase is capable of	43.	, ,	exanthine is the nucleobase of:
	catal	yzing:			
	(A)	initiation		(A)	cytosine
	(B)	elongation		(B)	inosine
	(C)	termination		(C)	trypsin
	(D)	All of the above		(D)	valine
ввт-	2004/0	GE-02(A) (8)			Set-C

ввт-	2004/GE-02(A)	(9)			Set-C	
	(D) 28S rRNA			(D)	None of the above	
	(C) 24S rRNA			(C)	Core promoter sequence is present	
	(B) 20S rRNA			(B)	RNA polymerase is present	
				(A)	RNA strand is present	
	(A) 16S rRNA			wher	1:	
	subunit contains the :		50.	Tran	scription in eukaryotes is initiated	
46.	In prokaryotes, the small 30S ribosomal			(D)	beta	
				(C)	omega	
	(D) helicase			(B)	sigma	
	(C) gyrase			(A)	alpha	
	(B) RNA polymerase			initia	nte transcription ?	
			49.	Whic	ch of these subunits is essential to	
	(A) DNA polymerase			(D)	All of the above	
	enzyme:			(C)	Inhibit protein synthesis	
	of DNA is copied to RNA by the			` ,	amino acids to ribosomes	
43.	In transcription, the particular segment			(B)	Identification and transport of	
45.	In transcription the particular ecoment			(A)	Proofreading	
	(D) encodable RNA		40.	The main function of tRNA with regard to protein synthesis is:		
	(C) encodable DNA		48.			
	(B) encodable amino acids			(C) (D)	promoter	
	(D) and debte entire with			(C)	primer	
	(A) decodable amino acids			(A) (B)	intron	
	are more codons than:			-	genes are called:	
44.	Degeneracy of code results because there		47.		intervening sequences, present in	

51.	Trans	scription occurs in:	55.	Hers	hey	and	Chase	conducted
	(A)	mitochondria		expe	riments	s on:		
	(B)	ribosome		(A)	fungi			
	(C)	nucleus		(B)	pea			
	(D)	cytoplasm		(C)	bacter	riophage	e	
52.	DNA	is the genetic material was proved		(D)	bacter	ria		
	by:		56.	The	isotope	of nit	rogen used	d in genetic
	(A)	Griffith		expe	riments	3:		
	(B)	Mendel		(A)	N ¹³			
	(C)	Newton		(B)	N ¹⁴			
	(D)	Darwin		(C)	N ¹²			
53.	The	double helix model of DNA was		(D)	N ¹⁵			
	given	ı by :	57.	Repl	ication	starts a	t origin of	:
	(A)	Meselson and Stahl		(A)	replica	ation		
	(B)	Watson and Crick		(B)	transla	ation		
	(C)	Morgan and Meselson		(C)	transc	ription		
	(D)	Muller and Stahl		(D)	both r	eplicati	on and trai	nscription
54.	Trans	slation occurs in:	58.	The 1	eplicat	ion fork	c moves in	:
	(A)	mitochondria		(A)	one di	irection		
	(B)	ribosome		(B)	two d	irection	s	
	(C)	nucleus		(C)	both (A) and	(B) are co	rrect
	(D)	cytoplasm		(D)	does r	not mov	e	

(10)

Set-C

	(A)	unwinding			only in	1:
	(B)	supercoiling			(A) 3	$3' \rightarrow 5'$
	(C)	no change in coiling			(B) 5	$5' \rightarrow 3'$
	(D)	coiling is not important in			(C) I	Both $3' \rightarrow 5'$ and $5' \rightarrow 3'$
		replication			(D) 1	Neither $3' \rightarrow 5'$ nor $5' \rightarrow 3'$
60.	Helio	cases use the energy of:	•	64.	DNA l	ligase forms:
	(A)	ATP			(A) s	sulphur bonds
	(B)	GTP			(B) l	nydrogen bonds
	(C)	Neither ATP nor GTP			(C) I	phosphodiester bonds
	(D)	helicases are themselves energy			(D) I	peptide bonds
		molecules	•	65.	Primas	ses create :
61.	DNA	a replication is semi-conservative			(A) I	DNA segment
	was j	proved by :			(B) I	RNA segment
	(A)	Meselson and Stahl			(C) I	protein segment
	(B)	Watson and Crick			(D) l	lipid segment
	(C)	Morgan and Meselson	(66.	Which	of the following polymerases
	(D)	Muller and Stahl			facilita	
62.	DNA	a coiling is affected by:			prokar	yotes ?
	(A)	single strand binding proteins			(A) I	Polymerase I
	(B)	helicases			(B) I	Polymerase II
	(C)	polymerases			(C) I	Polymerase III
	(D)	primases			(D) I	Polymerase δ
ввт-	2004/0	GE-02(A)	(11)			Set-C

63. DNA polymerases can synthesise DNA

59. The replication starts with DNA:

67.	The	segments of lagging strand are	71.	The b	pacterial genome is limited to:
	knov	vn as :		(A)	cell wall
	(A)	Klenow fragments		(B)	nucleus
	(B)	Okazaki fragment		(C)	nucleoid
	, ,			(D)	ribosomes
	(C)	Restriction fragment	72.	Rolli	ng circle replication occurs in:
	(D)	Recombinant fragment		(A)	fungi
68.	Nucl	eotides add to:		(B)	bacteria
	(A)	3'- NH ₂ end		(C)	algae
	(A)	3-1411 ₂ Clid		(D)	lichens
	(B)	3'-COO end	73.	DNA	replication occurs in:
	(C)	3'-OH end		(A)	Prophase
	(D)	3'-CO end		(B)	Telpohase
69.	The	Okazaki fragments are joined by :		(C)	M phase
0).				(D)	S phase
	(A)	primases	74.		does not occur in replication.
	(B)	ligases	/4.	(A)	Initiation
	(C)	polymerases		(A) (B)	Elongation
	(D)	hydrolases		(C)	Synapsis
				(D)	Termination
70.	The	replication of plasmids starts:		, ,	
	(A)	under control of chloroplast DNA	75.	The v	viruses have only:
	(B)	under control of mitochondrial		(A)	DNA
		DNA		(B)	RNA
	(C)	under control of genomic DNA		(C)	Both RNA and DNA
	(D)	independently of genomic DNA		(D)	Either RNA or DNA
	•	- · · ·		•	

76.	The primers are excised by DNA	80.	Exons are sequences carrying:
	polymerase:		(A) no genetic information
	(A) II		(B) all the genetic information
	(B) III		(C) only information for mitochondria
	(C) I		(D) only information for ribosomes
	(D) δ	81.	The percent of human genome
77.	Gene consists of:		responsible for coding proteins is:
	(A) only exons		(A) 5-6%
	(B) only introns		(B) 1-2%
	(C) Both exon and intron		(C) 15-20%
	(D) Neither exon nor intron		(D) 3-4%
78.	One of the following is not a non-coding	82.	The introns are removed by splicing
	gene:		during:
	(A) rRNA		(A) replication
	(B) tRNA		(B) translation
	(C) microRNA		(C) transcription
	(D) mRNA		(D) mutation
79.	The proteins are synthesized in:	83.	Primase is found in :
	(A) Ribosomes		(A) fungi
	(B) Mitochondria		(B) amoeba
	(C) Golgi body		(C) pea
	(D) Lysosomes		(D) bacteria

(13)

Set-C

84.	The	number of nucleotides in Okazaki	88.	Pseu	dogenes form as a result of:
	fragn	nents:		(A)	Replication
	(A)	1000-2000		(B)	Transcription
	(B)	2000-3000		(C)	Mutation
	(C)	3000-4000		(D)	Recombination
	(D)	4000-5000	89.	The	information in DNA is a sequence
85.	A ge	ne is a segment of :		of:	
	(A)	RNA		(A)	ribose sugars
	(B)	DNA		(B)	deoxyribose sugars
	(C)	Protein		(C)	phosphate groups
	(D)	Glucose units		(D)	bases
86.	The	central dogma of molecular	90.	The 1	DNA strand copied as mRNA is:
	biolo	egy:		(A)	sense strand
	(A)	$RNA \rightarrow DNA \rightarrow Protein$		(B)	antisense strand
	(B)	$DNA \rightarrow Protein \rightarrow RNA$		(C)	maybe sense or antisense
	(C)	$DNA \rightarrow RNA \rightarrow Protein$		(D)	neither sense nor antisense
	(D)	$RNA \rightarrow Protein \rightarrow DNA$	91.	The	transcription continues till RNA
87.	Reve	erse Transcription occurs in:		polyı	merase reaches :
	(A)	Virus		(A)	promoter
	(B)	Bacteria		(B)	inducer
	(C)	Chlorella		(C)	terminator
	(D)	Yeast		(D)	origin of transcription

(14)

Set-C

ввт-	2004/GE-02(A) (15)	Set-C
	(D) four lettered		(D) rRNA and tRNA
95.	(C) three lettered		(C) mRNA
	(B) single lettered		(B) tRNA
			(A) rRNA
	-	100.	The protein synthesis is directed by:
	The genetic code is:		(D) commaless
	(D) capping		(C) degeneracy
	(C) splicing		(B) unambiguous
	(B) excision		(A) overlapping
	(A) termination	99.	Which is not a feature of genetic code?
			(D) ten
	end is:		(C) two
94.	The addition of guanosine residue at 5'		(B) one
	(D) Proofreading		(A) twenty
	(C) Splicing	98.	The number of proteins specified by one codon:
	(B) Supercoiling	00	
	(A) Ligation		(C) 61 (D) 63
			(B) 64
	gene sequences is :		(A) 65
93.	The process of removal of intervening		proteins :
	(D) poly A	97.	The number of codons specifying
	(C) poly G		(D) UUU
	(B) poly T		(C) GCU
	(A) poly U		(B) GUU
			(A) UGA
	of:		protein:
92.	The chain termination occurs by addition	96.	One of the following does not code for

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the most correct/appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

 $Q.3 \quad \widehat{A} \quad \widehat{D} \quad \widehat{C}$

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है।
उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में
निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

प्रश्न 1 (A) (C) (D) प्रश्न 2 (A) (B) (D) प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।