Roll No	•••••					Question Booklet Number
O. M. R. Serial No.						

B. Sc. (Biotechnology) (Fourth Semester) EXAMINATION, 2022-23

INTERMEDIARY METABOLISM

Paper Code						
В	В	T	4	0	0	2

Time: 1:30 Hours] [Maximum Marks: 75

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 100 questions.

 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.

 All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश:

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा

 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण

 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या

 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी

 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

Questions Booklet Series

(Only for Rough Work)

1.	Identify the reduced form of coenzymes:	5.	Which of the following enzyme catalyzes
	(A) NAD ⁺		the last step of glycolysis?
	(B) FAD		(A) Hexokinase
	(C) NADH		(B) Pyruvate kinase
	(D) Ubiquinone		(C) Phosphofructokinase-1
2.	Which one of the following vitamin is a		(D) Enolase
	precursor of FAD:	6.	A single molecule of Acetyl-CoA generates
	(A) Vitamin B ₁		molecules of NADH during Krebs
	(B) Vitamin B ₂		crycle.
	(C) Vitamin B ₃		(A) Four
			(B) Three
	(D) Vitamin B ₅		(C) Two
3.	Gain of electrons can be termed as		(D) One
	(A) Metabolism	7.	What is the general term used for the
	(B) Anabolism		anaerobic degradation of glucose to obtain
	(C) Oxidation		energy?
	(D) Reduction		(A) Anabolism
4.	Identify the reduced agent in the following		(B) Oxidation
	reaction:		(C) Fermentation
	Glyceraldehyde-3-Phosphate + NAD ⁺		(D) Metabolism
	1, 3 → bisphosphoglcerate +	8.	Cleavage of Fructose 1, 6-biophosphate
	NADH:		yields
	(A) Glyceraldehyde-3-Phosphate		(A) Two aldoses
	(B) NADH		(B) Two ketoses
	(C) 1, 3 bisphosphoglcerate		(C) An aldose and a ketose
	(D) NAD ⁺		(D) Only a ketose
			•

(3)

Set-A

9.	The total number of ATP molecules	12.
	synthesized in the glycolysis by substrate	
	level phosphorylation:	
	(A) Two	
	(B) Four	
	(C) Six	
	(D) Eight	13.
10.	What is the first step in the payoff phase of	

(D) 2-phosphoglycerate

level

(B)

(C)

is

(A) Pyruvate

(A) Glucose into pyruvate

Glycolysis converts

(B) Glucose into phosphoenolpyruvate

The product formed in the first substrate

in

glycolysis

phosphorylation

3-phosphoglycerate

1, 3-bisphosphoglycerate

- (C) Fructose into pyruvate
- (D) Fructose into phosphoenolpyruvate
- 14. Which of the following statements is false about ATP hydrolysis?
 - (A) It is highly exergonic
 - (B) $\Delta G^{\circ} = -30.5 \text{ kJ/mol}$
 - (C) $\Delta G^{\circ} = 30.5 \text{ kJ/mol}$
 - (D) All of the above
- 15. When one molecule of glucose is oxidized to two molecules of lactate during anaerobic glycolysis, which of the following statements is false?
 - (A) Lactate dehydrogenase reaction producers no ATP
 - (B) Lyceraldehyde 3-P dehydrogenase reaction produces 2 ATP molecules
 - (C) Pyruvate kinase reaction produces 2 ATP molecules
 - (D) Phosphofructokinase-1 reaction uses 1 ATP molecule

phosphate to 1, 3-bisphosphoglycerate

(C) Reversible conversion of

to glyceraldehyde 3-phosphate

of

Reduction of 1,3-bisphophoglycerate

glyceraldehyde

3-

- dihydroxyacetone phosphate to glyceraldehyde 3-phosphate
- (D) Irreversible conversion of dihydroxyacetone phosphate to glyceraldehydes 3-phosphate
- 11. High concentration of glucose 6-phosphate is inhibitory to
 - (A) Hexokinase

glycolysis?

Oxidation

(B)

- (B) Pyruvate kinase
- (C) Enolase
- (D) Phosphofructokinase-I

BBT-4002 (4) Set-A

16.	Maltose hydrolysis yields	21.	Which enzyme is involved in the pathway of		
	(A) D-galactose and D-glucose		synthesis of acetyl-coA?		
	(B) 2-D-glucose		(A) Hexokinase		
	(C) <i>n</i> -D-glucose		(B) Pyruvate decarboxylase		
	(D) 2-D-fructose		•		
17.	Hydrolysis of lactose yields		(C) Pyruvate dehydrogenase		
	(A) D-galactose and D-glucose		(D) Pyruvate kinase		
	(B) D-glucose and D-glucose	22.	Which enzyme catalyzes the conversion of		
	(C) D-galactose and D-fructose		pyruvate to oxaloactate ?		
	(D) D-fructose and D-glucose				
18.	Formation of one molecule of glucose from		(A) Pyruvate carboxylase		
	pyruvate requires		(B) Pyruvate dehydrogenase		
	(A) 2 ATP, 2 GTP and 2 NADH		(C) Pyruvate kinase		
	(B) 4 ATP, 1 GTP and 2 NADH		(D) Phosphofructokinase-I		
	(C) 3 ATP, 2 GTP and 2 NADH	22	In the TCA evals, which of the following		
	(D) 4 ATP, 2 GTP and 2 NADH	23.	In the TCA cycle, which of the following		
19.	When glucose is converted to lactate by		combines with Acetyl-CoA to form a		
	anaerobic glycolysis, equivalent number of		6 carbon compound?		
	ATPs derived is ?		(A) Oxaloacetate		
	(A) 1		(B) Fumarate		
	(B) 2		(C) Pyruvate		
	(C) 3		(D) Malate		
	(D) 4		(D) Watate		
20.	Which enzyme is involved in the pathway of	24.	Oxaloacetate is reduced to malate by		
	ethanol fermentation ?		(A) Pyruvate carboxylase		
	(A) Hexokinase		(B) Malate dehydrogenase		
	(B) Pyruvate decarboxylase				
	(C) Pyruvate dehydrogenase		(C) Pyruvate kinase		
	(D) Pyruvate kinase		(D) Phosphofructokinase-1		

(5)

Set-A

25.	Which one out of the following enzymes	29.	The use of NADPH generated from pentose
	acts in the pentose phosphate pathway?		phosphate pathway cannot be:
	(A) Aldolase		(A) Oxidized in the electron transport
	(B) Glycogen phosphorylase		chain to provide 38 ATPs
	(C) Pyruvate kinase(D) 6-phosphogluconate dehydrogenase		(B) Used for the synthesis of fatty acids
			(C) Used for steroid synthesis
26.	Products of glucose oxidation essential for		•
	oxidative phosphorylation are:		(D) All of the above
	(A) Pyruvate	30.	Glucagon is released from::
	(B) Acetyl-CoA(C) NADPH and ATP		(A) Muscle
	(C) NADPH and ATP(D) NADH and FADH₂		(B) Pancreas
	(D) NADII aliu PADII ₂		· ,
27.	Which of the following complexes of		(C) Kidneys
	electron transport chain does not account for	31.	(D) Epithelial tissues
	the pumping out of protons from the mitochondrial matrix ?		Protein that contains a nucleic acid
	(A) Complex I		derivative of riboflavin is called:
	(B) Complex III		(A) Nucleic acid
	(C) Complex II		(B) Amino acid
	(D) Complex IV		(C) Flavoprotein
28.	Oxidation of 3 molecules of glucose by		(D) None of the above
	pentose phosphate pathway results in the		(D) Notice of the above
	production of:	32.	The process in which green plants
	(A) 3 molecules of pentose, 6 molecules		synthesize organic food by utilizing carbon
	of NADPH and 3 molecules of CO ₂		dioxide and water as raw materials, in the
	(B) 4 molecules of pentose, 6 molecules		presence of sunlight is called as:
	of NADPH and 3 molecules of CO ₂		(A) Respiration
	(C) 4 molecules of pentose, 3 molecules		-
	of NADPH and 3 molecules of CO ₂		(B) Food synthesis
	(D) 3 molecules of pentose, 4 molecules		(C) Photosynthesis
	of NADPH and 3 molecules of CO ₂		(D) Light synthesis

33.	Complex II of electron transport chain is	36.	Which of the following is not true for
	also called:		cytochrome C oxidase complex ?
	(A) NADH dehydrogenase		(A) It donates electrons to O ₂ .
	(B) Succinate dehydrogenase		(B) It accepts electrons from
	(C) Cytochrome bc1 complex		cytochrome c.
	(D) Cytochrome oxidase		(C) It pumps two protons out of the
34.	NADH and FADH ₂ is associated with		mitochondrial matrix.
	respectively:		(D) It is not inhibited by cyanide.
	(A) Complex II and complex III of	37.	Where does oxidative phosphorylation take
	electron transport chain		place ?
	(B) Complex I and complex III of electron		(A) Ribosomes
	transport chain		(B) Nucleus
	(C) Complex III and complex IV of		(C) Mitochondria
	electron transport chain		(D) Cell Membrane
	(D) Complex I and complex II of electron	38.	Every cycle of β -oxidation produces
	transport chain		(A) 1 FAD, 1 NAD^+ and 2 CO_2
35.	In the electron transport chain, each pair of		molecules
	electron donated by NADH releases		(B) 1 FADH ₂ , 1 NADH and 1 acetyl co-A
	sufficient energy to produce		(B) I PADI12, I NADII and I acetyl co-A
	(A) 0.5 ATP		(C) 1 FADH ₂ , 1 NAD ⁺ and 1 acetyl
	(B) 1.5 ATP		co-A
	(C) 2.5 ATP		(D) 1 FAD, 1 NADH and 2 CO ₂
	(D) 3.5 ATP		molecules

(7)

Set-A

41.	NADP is a cofactor used in		(C) $6CO_2 + 6O_2 \rightarrow C_6H_{12}O_6 + 12H_2O$
<i>1</i> 1	(D) Lamellae, grana NADB is a cofactor used in		(B) $12H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$ (C) $6CO_2 + 6O_2 \rightarrow C_2H_{12}O_2 + 12H_2O_2$
71.			2 2 0 12 0 2
	(A) Catabolic reactions		(D) $6CO_2 \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$
	(B) Anabolic reactions	46.	. The first stable compound of Krebs cycl
	(C) Elimination reaction	-10.	is
	(D) Redox reactions		
42.	Which of the following is the Complex I of	f	(A) Citrate
42.	ETS?	L	(B) Cis-Aconitate
			(C) Moxaloacetate
			(D) Malate
	(B) Cytochrome c oxidase		
		47	During photosynthesis which light is lead
	(C) Cytochrome bc ₁	47.	
	(C) Cytochrome bc₁(D) Succinate dehydrogenase	47.	During photosynthesis, which light is least effective?
43.	. , ,	47.	
43.	(D) Succinate dehydrogenase	47.	effective ?
43.	(D) Succinate dehydrogenase NADP ⁺ in its reduced form is	47.	effective ? (A) Green light (B) Sunlight
43.	 (D) Succinate dehydrogenase NADP⁺ in its reduced form is	47.	effective? (A) Green light (B) Sunlight (C) Yellow light
43.	 (D) Succinate dehydrogenase NADP⁺ in its reduced form is	47.	effective ? (A) Green light (B) Sunlight

39. ATP synthesis via chemiosmosis 44. NADH produced during glycolysis transfer

48.	Other than CO ₂ and light, which is used as	52.	Pentose phosphate pathway and malic
	the raw material for photosynthesis?		enzymes provide required for fatty
	(A) O ₂		acid synthesis ? (A) NADH
	(B) CO ₂		(B) FAD
	(C) H ₂ O		(C) FADH ₂
	(D) MnO ₂		(D) NADPH
49.	How many double bonds are present in the	53.	How many rounds of β-oxidation are
	linoleic acid?		necessary to metabolize palmitic acid
	(A) One		(16:0)?
	(B) Two		(A) Six
	(C) Three		(B) Seven
	(D) Four		(C) Eight
50.	Which of the following is an essential fatty	5.4	(D) Nine
	acid?	54.	Which is the site of dark reaction of photosynthesis?
	(A) Palmitic acid		(A) Matrix
	(B) Oleic acid		(B) Stroma
	(C) Stearic acid		(C) Cytochrome
	(D) Linolenic acid		(D) All of the above
51.	Ergosterol is a sterol found in the cell	55.	Carnitine Shuttle system has an important
	membrane of		role in
	(A) Bacteria		(A) β-oxidation of fatty acids
	(B) Mammals		(B) Fatty acid synthesis
	(C) Fungi		(C) Unsaturation of fatty acid
	(D) Plants		(D) All of the above
BBT-	4002 (9)	Set-A

56.	Identify the 5-carbon metabolite:	61.	Which of the following condenses acyl and
	(A) Citrate		malonyl groups during fatty acid
	(B) α- ketoglutarate		biosynthesis?
	(C) Succinate		(A) Acyl carrier protein
	(D) Malate		(B) Acetyl-CoA ACP transacetylase
57.	How many carbon atoms does OAA		(C) β-ketoacyl ACP synthase
	contain ?		(D) Malonyl-CoA ACP transferase
	(A) 3		
	(B) 2	62.	Which one of the following is the source of
	(C) 4		electrons in photosynthesis?
	(D) 1		(A) Carbohydrates
58.	Where are ketone bodies synthesized?		(B) CO
50.	·		(C) Water
	(A) Brain(B) Muscles		(D) NADH
	(C) Liver	<i>(</i> 2	Duelling in the conditional devices of
	(D) Adipose tissues	63.	Proline is the cyclized derivative of:
	· · · · · ·		(A) Glutamate
59.	Identify the ketone bodies:		(B) Arginine
	(A) Acetone		(C) Glutamine
	(B) Acetoacetate		(D) Serine
	(C) Hydroxybutyrate		
	(D) All of the above	64.	Which of the following amino acid is the
60.	Insulin stimulates :		precursor of cysteine?
	(A) Glycogenolysis		(A) Proline
	(B) Gluconeogenesis		(B) Glutamine
	(C) Glycogenesis		(C) Serine
	(D) Fatty acid oxidation		(D) Glutamate

(10)

Set-A

65.	Which of the following is a non-essential	69.	Pyruvate is a precursor of:
	amino acid?		(A) Tyrosine
	(A) Methionine		(B) Histidine
	(B) Threonine		(C) Phenylalanine
	(C) Lysine		(D) Valine
	(D) Proline		(b) vanie
66.	Light energy is converted to chemical	70.	When a molecule of palmitic acid (16:0) is
	energy in the presence of:		completely oxidized by β -oxidation, how
	(A) Chloroplast		many molecules of Acetyl CoA are
	(B) Ribosomes		formed?
	(C) Mitochondria		(A) Seven
	(D) Stomata		(B) Eight
67.	Identify the aromatic amino acid:		(C) Nine
	(A) Proline		(D) Ten
	(B) Lysine	71.	When a malacula of nalmitic said (16.0) is
	(C) Tryptophan	/1.	When a molecule of palmitic acid (16:0) is
	(D) Leucine		completely oxidized by β -oxidation, how
68.	Oxaloacetate is a precursor of aspartate		many molecules of NADH and FADH ₂ are
	and:		generated?
	(A) Serine		(A) Seven
	(B) Tyrosine		(B) Eight
	(C) Tryptophan		(C) Nine
	(D) Lysine		(D) Ten

(11)

Set-A

72.	Which of the following gives rise to Valine	76.	Kreb Cycle is in nature.
	and Isoleucine ?		(A) Anabolic
	(A) Pyruvate		(B) Catabolic
	(B) Glutamate		(C) Amphibolic
	(C) Aspartate		(D) None of the above
	(D) Serine		
73.	Which of following is common compound	77.	Urea cycle converts:
	shared by TCA cycle and Urea Cycle ?		(A) Keto acids into amino acids
	(A) α-Ketoglutarate		(B) Amino acids into keto acids
	(B) Succinyl-CoA		(C) Ammonia into a less toxic form
	(C) Oxaloacetate		(D) Ammonia into a more toxic form
	(D) Fumarate	78.	Conversion of dUMP to dTMP is catalyzed
74.	Nitrogen atoms of urea produced in the urea		by:
	cycle are derived from:		(A) Thymidylate synthase
	(A) Ammonia and aspartic acid		(B) Dihydrofolatereductase
	(B) Nitrate		(C) Dihydroorotase
	(C) Nitrite		(D) Cytidylate synthase
	(D) All of the above		
75.	Which of the following is an important	79.	Adenosine deaminasedeaminates adenosine
	precursor in the pyrimidine biosynthesis?		to:
	(A) Glycine		(A) Hypoxanthine
	(B) Aspartate		(B) Inosine
	(C) Serine		(C) Xanthine
	(D) Leucine		(D) Guanosine

(12)

Set-A

80.	Which of the following amino acid is 83.	Phenylketonuria (PKU) is a genetic disorder
	exclusively ketogenic ?	caused by a deficiency in which enzyme?
	(A) Leucine	(A) Phenylalanine hydroxylase
	(B) Asparagine	(B) Tyrosine hydroxylase
	(C) Threonine	(C) Tryptophan hydroxylase
	(D) Proline	(D) Histidine hydroxylase
81.	The first intermediate with a complete 84.	Which of the following yields Acetyl-CoA
	purine ring is:	via Acetoacetyl-CoA?
	(A) Inosinate	(A) Leucine
	(B) Formate	(B) Isoleucine
	(C) Aspartate	(C) Threonine
	(D) Glycine	(D) Alanine
82.	Which of the following amino acid is 85.	In the reduction of pyruvate to lactate,
	exclusively glucogenic ?	which of the following is regenerated?
	(A) Arginine	(A) H^+
	(B) Leucine	(B) NADH
	(C) Lysine	(C) NAD ⁺
	(D) Threonine	(D) FAD

(13)

Set-A

86.	Albmism is a disorder caused by a 9	0. 3-phosphoglycerate is not the metabolic
	deficiency in which enzyme?	precursor for :
	(A) Phenylalanine hydroxylase	(A) Serine
	(B) Tyrosinase	(B) Glycine
	(C) Tryptophan hydroxylase	(C) Cysteine
	(D) Histidine hydroxylase	(D) Arginine
87.	Which of the following produces pyruvate?	1. The accumulation of this substance in the
	(A) Leucine	body causes gout :
	(B) Isoleucine	(A) Blood plasma
	(C) Lysine	(B) WBC
	(D) Alanine	(C) Uric acid
		(D) Synovial fluid
88.		2. Which one of the following is the end
	for the <i>de novo</i> purine biosynthesis?	product of gluconeogenesis?
	(A) Aspartic Acid	(A) Pyruvate
	(B) Glycine	(B) Citrate
	(C) Glutamine	(C) Glucose
	(D) Arginine	(D) Glycine
89.		3. Which of the following is not a
	ketoglutarate ?	monosaccharide with 5 carbon atoms?
	(A) Leucine	(A) Arabinose
	(B) Threomne	(B) Xylulose
	(C) Methionine	(C) Trehalose
	(D) Proline	(D) Ribulose

(14)

Set-A

94.	Glycolysis begins with which of the	98.	Where are the enzymes for β -oxidation
	following reactions ?		present ?
	(A) Reduction		(A) Nucleus
	(B) Oxidation		
	(C) Phosphorylation		(B) Cytosol
	(D) Acidification		(C) Mitochondria
95.	Urea production occurs almost exclusively		(D) Golgi Apparatus
	in:	99.	Which of the following is an analogous to
	(A) Kidney		starch?
	(B) Liver		
	(C) Blood		(A) Cellulose
	(D) Urine		(B) Glycogen
96.	In which of the following forms, glucose is		(C) Sucrose
	stored in the liver ?		
	(A) Glycogen		(D) Chitin
	(B) Starch	100.	Which of the following are the storage
	(C) Dextrin		polysaccharides ?
	(D) Cellulose		(1)
97.	Lignin is derived from:		(A) Glycogen
	(A) Phenylalanine		(B) Cellulose
	(B) Valine		(C) Chitin
	(C) Tryptophan		(D) Glucose
	(D) Arginine		

(15)

Set-A

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

Q.3 A \bigcirc C D

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में
सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

 प्रश्न 1 (A)
 (C)
 (D)

 प्रश्न 2 (A)
 (B)
 (D)

 (A)
 (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।