Roll No	 				Question Booklet	Number
O. M. R. Serial No.						

B. C. A. (Fourth Semester) EXAMINATION, 2022-23

OPTIMIZATION TECHNIQUES

Paper Code						
В	C	A	4	0	4	N

Time : 1:30 Hours]

Questions Booklet Series

A

[Maximum Marks : 75

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा
 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण
 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या
 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी
 अन्य प्रकार की कमी हो, तो उसे तूरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

1.	In operations research, the	5.	The operations research technique which
	are prepared for situations.		helps in minimizing total waiting and
	(A) mathematical models		service costs is
	(B) physical models diagrammatic		(A) Queuing Theory
	(C) diagrammatic models		(B) Decision Theory
	(D) None of the above		(C) Both (A) and (B)
2	Which of the following is not the above		(D) None of the above
2.	Which of the following is not the phase	6.	In graphical representation the bounded
	of OR methodology?		region is known as region.
	(A) Formulating a problem		(A) solution
	(B) Constructing a model		(B) basic solution
	(C) Establishing controls		(C) feasible solution
	(D) Controlling the environment		(D) optimal
3.	Operations research is the application of	7.	Maximize $Z = 11x + 8y$ subject to
	methods to arrive at the		$x \le 4, y \le 6, x+y \le 6, x \ge 0, y \ge 0.$
	optimal solutions to the problems.		(A) 44 at (4, 2)
	(A) economical		(B) 60 at (4, 2)
	(B) scientific		(C) 62 at (4, 0)
	(C) Both (A) and (B)		(D) 48 at (4, 2)
	(D) artistic		
4.	Which technique is used in finding a	8.	The occurrence of degeneracy while
	solution for optimizing a given objective,		solving a transportation problem means
	such as profit maximization or cost		that:
	reduction under certain constraints ?		(A) total supply equals total demand
	(A) Queuing Theory		(B) the solution so obtained is not
	(B) Waiting Line		feasible
	(C) Both (A) and (B)		(C) the few allocations become
	(D) Linear Programming		negative
	(D) Linear Frogramming		(D) None of the above

(3)

Set-A

9.	The initial solution of a transportation
	problem can be obtained by applying any
	known method. However, the only
	condition is that:
	(A) The solution be optimal
	(B) The rim conditions are satisfied

- (C) The solution not be degenerate
- (D) All of the above
- 10. The solution to a transportation problem with 'm' rows (supplies) and 'n' columns (destination) is feasible if number of positive allocations are :
 - (A) m+n
 - (B) m*n
 - (C) m + n 1
 - (D) m + n + 1
- 11. The total time required to complete all the jobs in a job sequencing problem is known as
 - (A) processing time
 - (B) waiting time
 - (C) elapsed time
 - (D) idle time
- - (A) At least *n*
 - (B) At most n
 - (C) n-1
 - (D) n+1

- 13. One disadvantage of using North-West Corner Rule to find initial solution to the transportation problem is that:
 - (A) It is complicated to use
 - (B) It does not take into account cost of transportation
 - (C) It leads to a degenerate initial solution
 - (D) All of the above
- 14. The unused materials are returned to stores with a material and
 - (A) Acceptance
 - (B) Transfer
 - (C) Return
 - (D) None of the above
- - (A) Minimum stock level
 - (B) Re-order stock level
 - (C) Economic order quantity
 - (D) None of the above
- 16. Which of the following is not an inventory?
 - (A) Machines
 - (B) Raw Material
 - (C) Finished Products
 - (D) Consumable tools

The replacement policy that is imposed	21.	In a transportation problem, the method
on an item irrespective of its failure		which finds difference between two least
is		cost for each row and column
(A) Group replacement		is
(B) Individual replacement		
(C) Repair spare replacement		(A) Minimum entry method
(D) Successive replacement		(B) North-west corner method
Customen hehavious in which the		(C) North-east corner method
customer behaviour in which the		(D) VAM method
another in a multiple channel situation .	22.	In simplex method, we add in
		the case of constraints with sign "=".
(A) balking		(A) Surplus variable
		(B) Artificial variable
(D) alternating		(C) Slack variable
The right-hand side constant of a		(D) None of the above
constraint in a primal problem appears in the corresponding dual as	23.	As the order quantity increases, this cost
(A) coefficient in the objective function		will reduce :
(B) a right-hand side constant of a function		(A) ordering cost
(C) an input output coefficient		(B) insurance cost
(D) a left-hand side constraint		(C) inventory carrying cost
coefficient variable		(D) stock out cost
If a job is having minimum processing time under both the machines, then the	24.	LOB stands for :
job is placed in:		(A) Lot of Bills
(A) any one (first or last) position		(B) Lot of Batches
(B) available last position		(C) Line of Batches
(C) available first position		` '
(D) Both first and last position		(D) Line of Business
	on an item irrespective of its failure is	on an item irrespective of its failure is

(5)

Set-A

25.	The	assignment problem is a special case	28.	Quei	uing theory deals with the problem
	of tra	ansportation problem in which:		of:	
	(A)	Number of origins are less than the		(A)	Material handling
		number of destinations.		(B)	Reducing waiting time or idle time
	(B)	Number of origins are greater than		(C)	Better utilization of man services
		the number of destinations.		(D)	Effective use of machines
	(C)	Number of origins are greater than	29.		is that element of the simplex
		or equal to the number of destinations.		table	which is both in the key row and
	(D)	Number of origins equals the		key (column.
	(D)	number of destinations.		(A)	Key element
				(B)	Pivot element
26.		large negative opportunity cost value		(C)	Both (A) and (B)
		unused cell in a transportation table		(D)	None of the above
		nosen to improve the current solution			
	beca	use:	30.	Traf	fic intensity is computed by using the
	(A)	It represents per unit cost reduction		form	ula :
	(B)	It represents per unit cost		(A)	λ/μ
		improvement		(B)	μ/λ
	(C)	It ensure no rim requirement		(C)	$1-\lambda/\mu$
		violation		(D)	$1-\mu/\lambda$
	(D)	None of the above		` '	•
27.	If an	opportunity cost value is used for an	31.	Matr	rix Minima Method to find initial
	unus	sed cell to test optimality, it should be		feasi	ble solution to a TP is also
				calle	d
	(A)	Equal to zero		(A)	NWCM
	(B)	Most negative number		(B)	LCM
	(C)	Most positive number		(C)	VAM

(D) Any value

(D) None of the above

32.	Traffic intensity in Queuing Theory is	36.	In sequencing if the smallest time belong
	also called		to machine-1, then that job has to be
	(A) Service factor		placed of the sequence.
	(B) Arrival factor		(A) in the middle
	(C) Utilisation factor		(B) in the starting
	(D) None of the above		(C) at end
33.	A customer's behaviour of leaving		(D) None of the above
	the queue due to impatience is	37.	Replacement is said to be necessary
	called		if
	(A) Jockying		(A) Failure rate is increasing.
	(B) Reneging		(B) Failure cost is increasing.
	(C) Collusion		(C) Failure probability is increasing.
	(D) Balking		(D) Any of the above
		38.	In the formula of Economic Order
34.	Commonly assumed probability		Quantity, the alphabet 'O' stands
	distribution of service pattern		
	1		for
	are		for
	1		
	are		(A) Ordering Level
	are (A) Poisson distribution		(A) Ordering Level(B) Ordering Cost
	are (A) Poisson distribution (B) Exponential distribution	20	(A) Ordering Level(B) Ordering Cost(C) Ordering and Carrying Cost(D) None of the above
35.	are	39.	 (A) Ordering Level (B) Ordering Cost (C) Ordering and Carrying Cost (D) None of the above What is the first approach in optimization
35.	are	39.	 (A) Ordering Level (B) Ordering Cost (C) Ordering and Carrying Cost (D) None of the above What is the first approach in optimization methods?
35.	are	39.	 (A) Ordering Level (B) Ordering Cost (C) Ordering and Carrying Cost (D) None of the above What is the first approach in optimization methods? (A) Theory of bending
35.	are	39.	 (A) Ordering Level (B) Ordering Cost (C) Ordering and Carrying Cost (D) None of the above What is the first approach in optimization methods?
35.	are	39.	 (A) Ordering Level (B) Ordering Cost (C) Ordering and Carrying Cost (D) None of the above What is the first approach in optimization methods? (A) Theory of bending

(7)

Set-A

40.	Initial feasible solution to a	44.	The average arrival rate in a single server
	transportation problem can be found out		queuing system is 10 customers per hour
	by		and average service rate is 15 customers
	(A) VAM		per hour. The average time that a
	(B) MODI Method		customer must wait before it is taken up
	(C) Both (A) and (B)		for service shall be minutes.
	(D) None of the above		(A) 6
41.	It is assumed that maintenance cost		(B) 8
	mostly depends on :		(C) 10
	(A) Calendar age		(D) 12
	(B) Running age	45.	In the optimal simplex table, $Z_j - C_j = 0$
	(C) Manufacturing date		value indicates
	(D) User's age		(A) alternative solution
42.	The coefficient of an artificial variable in		(B) bounded solution
	the objective function of penalty method		(C) infeasible solution
	are always assumed to be		(D) unbounded solution
	(A) 0	46.	When D = 18000, holding cost = $ ₹ 1.20 $,
	(B) 1	40.	
	(C) M		set-up cost = ₹ 400, EOQ =
	(D) –M		(A) 3465
12	The section was to markle as well become		(B) 3750
43.	The assignment problem will have		(C) 3500
	alternate solutions when the total		(D) 4000
	opportunity cost matrix has:	47.	When the probability of failure reduces
	(A) at least one zero in each row and column		gradually, the failure mode is said to be:
	(B) when all rows have two zeros		(A) Regressive
	(C) when there is a tie between zero		(B) Retrogressive
	opportunity cost cells		(C) Progressive
	(D) if two diagonal elements are zeros.		(D) Recursive

(8)

Set-A

48.	Whe	n money value changes with time at	53.	Whic	ch of the followings is an assumption
	10%	, then PWF for first year is :		of Li	near Programming Technique ?
	(A)	1		(A)	Divisibility
	(B)	0.909		(B)	Additivity
	(C)	0.852			•
	(D)	0.9		(C)	Proportionality
49.	The	unit of traffic intensity is		(D)	All of the above
	(A)	Poisson	54.	Duri	ng an iteration while moving from
	(B)	Markow		one s	solution to the next, degeneracy may
	(C)	Erlang			r when:
	(D)	Kendall			
50.	If the	e operating characteristics of a queue		(A)	The closed path indicates a
	are d	lependent on time, then it is said to			diagonal move
	be:			(B)	Two or more occupied cells are on
	(A)	Transient state			the closed path but neither of them
	(B)	Busy state			represents a corner of the path.
	(C)	Steady state		(C)	Two or more occupied cells on the
	(D)	Explosive state			closed path with minus sign are
51.	As p	per queue discipline is the following			tied for lowest circled value
	is no	t the negative behavior of customer:		(D)	Either of the above
	(A)	Balking		(2)	Entire of the woove
	(B)	Reneging	55.	The	smallest quantity is chosen at the
	(C)	Boarding		corne	ers of the closed path with negative
	(D)	Collusion		sign	to be assigned at unused cell
52.	The	method used to solve LPP with use		beca	use:
	of ar	tificial variables is called		(A)	It improve the total cost
	(A)	Dual Simplex		(B)	It does not disturb rim conditions
	(B)	Graphical		` ′	
	(C)	Big-M		(C)	It ensure feasible solution
	(D)	Transportation Problem		(D)	All of the above

(9)

Set-A

56.	The occurrence of degeneracy while	60.	In simplex method basic solution set as
	solving a transportation problem means		(n-m), all variables other than basic are
	that		classified as
	(A) total supply equals total demand		(A) constant variable
	(B) the solution so obtained is not		(B) non-positive variables
	feasible		(C) basic variables
	(C) the few allocations become negative		(D) non-basic variable
	(D) None of the above	61.	In simplex method, we add variables in
57.	In maximization problem, optimal		the case of '='
	solution occurring at corner point yields		(A) Slack Variable
	the:		(B) Surplus Variable
	(A) mean values of z		(C) Artificial Variable
	(B) highest value of z		(D) None of the above
	(C) lowest value of z	62.	is another method to solve a
	(D) mid values of z	02.	given LPP involving some artificial
58.	Column in simplex initial table used to		variable.
	represent new basic variable is classified		(A) MODI method
	as		(B) Method of penalties
	(A) column variable		(C) Two-phase simplex method
	(B) key column(C) key row		(D) None of the above
	(D) row variable		(D) None of the above
	(D) Tow variable	63.	In transportation models designed in
59.	In simplex method, slack, surplus and		linear programming, points of demand is
	artificial variables are restricted to be		classified as
			(A) ordination
	(A) multiplied		(B) transportation
	(B) negative		(C) destinations
	(C) non-negative		
	(D) divided		(D) origins

64.	In less than or equal to constraint
	equations, variable which is used to
	balance both side of equations is
	classified as
	(A) solving variable
	(B) condition variable
	(C) slack variable
	(D) positive variable
65.	If in a LPP, the solution of a variable can
	be made infinity large without violating
	the constraints, the solution is
	(A) Infeasible
	(B) Unbounded
	(C) Alternative
	(D) None of the above
66.	A BFS of a LPP is said to be if
	at least one of the basic variable is zero.
	(A) Degenerate
	(B) Non-degenerate
	(C) Infeasible
	(D) Unbounded

In simplex method slack variables are

(C) divisor contribution in objective

base contribution in

assigned zero coefficients because:

contribution

high contribution

67.

(A) no

(B)

(D)

function

function

function

function

- 68. Which of the following is a type of Linear Programming Problem?
 - Manufacturing problem (A)
 - Diet problem (B)

- Transportation problems (C)
- All of the above (D)
- 69. Cells in the transportation problem allocation will be having positive called
 - (A) cells
 - occupied (B)
 - (C) unoccupied
 - (D) table
- 70. The time required for two operations cutting and binding of 5 jobs are as follows:

Cutting	Binding
(min)	(min)
8	8
6	7
2	7
5	6
7	4
	(min) 8 6 2

scheduling the job?

- (A) 2-4-1-3-5
- 3-4-2-1-5 (B)
- (C) 1-2-3-4-5
- 3-5-2-4-1 (D)

What is	the	optimal	sequence	of

BCA-404(N)	(11)	Set-A

objective

objective

objective

in

in

71.	Sequ	encing is a subset of:	75.	In	LPP,	degeneracy	occurs	in
	(A)	Routing			st	ages.		
	(B)	Scheduling		(A)	One			
	(C)	Expediting		(B)	Two			
	(D)	None of the above		(C)	Three			
70				(D)	Four			
72.		are expressed is the form of	76.	If th	nere are	more than	one optin	num
	inequities or equations.			solut	ion for	the decision	variable	the
	(A)	Constraints		solut	ion is			
	(B)	Objective Functions		(A)	Infeasib	ole		
	(C)	Both (A) and (B)		(B)	Unbour	nded		
	(D)	None of the above		(C)	Alterna	tive		
72	TTI	alication for ations and accordant		(D)	None of	f the above		
73.		objective, functions and constraints linear relationship between	77.	An optimization model:				
	are			(A)	Mathen	natically prov	ides the	best
	•••••				decision	n		
	(A)	Variables		(B)	Provide	es decision wit	hin its lim	iited
	(B)	Constraints			context			
	(C)	Functions		(C)	Helps	in evaluat	ing var	ious
	(D)	All of the above			alternat	ives constantly	y	
74.	Gran	hic method can be applied to solve a		(D)	All of the	he above		
74.	•		78.	The	word	"Linear"	means	that
		LPP when there are only		the	relation	nships are	represe	nted
	varia			by				
	(A)	One		(A)	Diagona	al lines		
	(B)	More than one Two		(B)	Curved	lines		
	(C)			(C)	Straight	t lines		
	(D)	Three		(D)	Slanting	g lines		

79.	Any feasible solution which optimizes	83.	which is a subclass of a
	(minimizes or maximizes) the objective		Linear Programming Problem (LPP).
	function of the LPP is called		(A) Programming problem
	its		(B) Transportation problem
	(A) Optimal solution		(C) Computer problem
	(B) Non-basic variables		. ,
	(C) Solution		(D) Both (A) and (B)
	(D) Basic feasible solution	84.	MODI method is used to
80.	A set of values X_1 , X_2 ,, X_n which		obtain
	satisfies the constraints of the LPP is		(A) Optimal solutions
	called		(B) Optimality test
	(A) Solution		(C) Both (A) and (B)
	(B) Variable		(D) Optimization
	(C) Linearity		\
	(D) None of the above	85.	For solving an assignment problem,
81.	An objective function is maximized when		which method is used?
	it is a function.		(A) Hungarian
	(A) Passive		(B) American
	(B) Profit		(C) German
	(C) Cost		(D) Both (A) and (B)
	(D) None of the above	0.6	
82.	PP is exactly used in solving what kind	86.	To make an unbalanced assignment
o 	of resource allocation problems ?		problem balanced, what are added with
			all entries as zeroes ?
	(A) Production planning and scheduling		(A) Dummy rows
	(B) Transportation		(B) Dummy columns
	(C) Sales and advertising		(C) Both (A) and (B)
	(D) All of the above		(D) Dummy entries
	· /		•

87.	Any feasible solution to a transportation	90.	Server mechanism in a queuing system is		
	problem containing m origins and n destinations is said to be		characterised by:		
			(A) Server behaviour		
			(B) Customer behaviour		
	(A) Independent		(C) Customer in the system		
	(B) Degenerate		(D) All of the above		
	(C) Non-degenerate	91.	The variables whose coefficient vectors		
	(D) Both (A) and (B)		are unit vectors are called		
			(A) Unit Variables		
88.	A path formed by allowing horizontal		(B) Bask Variables		
	and vertical lines and the entire corner cells of which are occupied is called a		(C) Non-basic Variables		
			(D) None of the above		
			The variable is used for the		
			greater than or equal to (\geq) type of		
	(A) Occupied path		constraint.		
	(B) Open path		(A) Only Slack		
	(C) Closed path		(B) Surplus and Artificial		
	(C) Closed path		(C) Only Artificial		
	(D) None of the above		(D) Basic		
89.	Once the initial basic feasible solution has been computed, what is the next step in the problem ? (A) VAM		Cars arrive at a service station according		
			to Poisson's distribution with mean rate		
			of 5 per hour. The service time per car is		
			exponential with a mean of 10 minutes.		
			At steady state, the average waiting time		
			in the queue is:		
	(B) Modified distribution method		(A) 10 minutes		
	(C) Optimality test		(B) 20 minutes		
	(D) None of the above		(C) 25 minutes		
	(D) None of the above		(D) 50 minutes		

(14)

Set-A

94.	The time period between placing an order	98.	Which of the following characteristics
	its receipt in stock is known		apply to the queuing system?
	as		(A) customer population
	(A) Lead time		(B) arrival process
	(B) Carrying time		(6)
	(C) Shortage time		(C) Both (A) and (B)
	(D) Overtime		(D) Neither (A) nor (B)
95.	Which among the following costs is the	99.	For analysing the problem,
	expense of storing inventory for a specified period of time ?		decision-makers should normally
	(A) Purchasing cost		study:
	(B) Carrying cost		(A) Its qualitative aspects
	(C) Financial cost		(B) Its quantitative aspects
	(D) Storing cost		(C) Both (A) and (B)
96.	Johnson's rule is used for		(D) Neither (A) nor (B)
	(A) Queuing problem		
	(B) Sequencing problem	100.	In simplex method, if there is tie between
	(C) Both (A) and (B)		a decision variable and a slack (or
	(D) None of the above		surplus) variable, should be
97.	Who is known as father of queuing		selected.
	theory?		(A) Slack variable
	A) George DantzigB) A. K. Erlang		(B) Surplus variable
	(C) George Kendall		(C) Decision variable
	(D) Both (B) and (C)		(D) None of the above

(15)

Set-A

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

Q.3 A \bigcirc C D

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में
सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

 प्रश्न 1 (A)
 (C)
 (D)

 प्रश्न 2 (A)
 (B)
 (D)

 (A)
 (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।