Roll No	•••••					Question Booklet Number
O. M. R. Serial No.						

M. Sc. (Biochemistry) (Second Semester) (NEP) EXAMINATION, 2022-23

PLANT BIOCHEMISTRY

Paper Code							
L	0	2	0	8	0	3	T

Time : 1:30 Hours]

Questions Booklet Series

A

[Maximum Marks : 75

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. booklet contains 100 questions. Examinee is required to answer OMR Answer-Sheet questions in the provided and not in the question booklet. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा

 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण

 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या

 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी

 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

- 1. Plant cell wall is made up of :
 - (A) Cellulose, hemicelluloses and pectin
 - (B) Cellulose only
 - (C) Cellulose, hemicelluloses and chitin
 - (D) Cellulose and chitin
- 2. Middle lamella is made up of pectin.

 Pectin is chemically:
 - (A) Glucoronic and galacturonic acid
 - (B) Heteropolymer of xylose, mannose and arabinose
 - (C) Polymer of D-glucose units
 - (D) N-acetyl glucosamine and N-acetyl muramic acid
- 3. Which of the statements are incorrect regarding plant cell wall?
 - (A) Middle lamella is made up of pectin and lignin.
 - (B) In certain plants, tertiary cell wall is also present which has xylan beside cellulose.
 - (C) Secondary cell wall consists of three concentric layers (S1, S2 and S3) one after the other.
 - (D) Primary and secondary walls are present in meristematic cells.

- 4. Water potential of a cell is not dependent on:
 - (A) Concentration of sugars
 - (B) Concentration of amines, amino acids and amides
 - (C) Concentration of starch
 - (D) Concentration of inorganic ions
- 5. Which potential is considered of negligible value?
 - (A) Water potential
 - (B) Matrix potential
 - (C) Solute potential
 - (D) Pressure potential
- 6. **Statement A :** Solute potential increases with dissolution of solutes.
 - **Statement B**: The value of solute potential is always negative.
 - (A) Both the Statements are true.
 - (B) Both the Statements are false.
 - (C) Statement A is true but Statement B is false.
 - (D) Statement B is true but Statement A is false.
- 7. The root and shoot apex of a plant represent which phase of the growth?
 - (A) Maturation
 - (B) Elongation
 - (C) Meristematic
 - (D) Elevation

8.	The pressure built-up against the cell wall of a plant cell due to diffusion of water causes the cell to become	13.	Statement A: Pumps are proteins that use energy to carry substances across the cell membrane. Statement B: They transport substances from high concentration to low concentration.
9.	Pressure potential is usually		 (A) Both the Statements are true. (B) Both the Statements are false. (C) Statement A is true but Statement B is false. (D) Statement B is true but Statement
10.	Apoplastic pathway is discontinuous at	14.	A is false. Name of the protein, which is involved in the transfer of water across the cellular membrane: (A) Keratin (B) Alanine (C) Arginine (D) Aquaporin
12.	(D) vascular tissues The extensions of root epidermal cells which increase the surface area for absorption are called as	15.	The large vacuoles in plant cells are surrounded by a membrane known as: (A) apoplast (B) symplast (C) tonoplast (D) protoplast

(4)

Set-A

- 16. The osmotic driving force for water uptake by vacuole, which is required for plant cell enlargement is provided by :
 - (A) active solute accumulation
 - (B) gravitational pull
 - (C) hydrolytic enzymes
 - (D) protein bodies
- 17. In a plant cell, the first wall laid down at the end of cell division is known as:
 - (A) Primary cell wall
 - (B) Secondary cell wall
 - (C) Phragmoplast
 - (D) Cellulose microfibrils
- 18. Secondary wall increases by:
 - (A) Lignification
 - (B) Growth
 - (C) Saponification
 - (D) Calcification
- 19. The channels in cell walls of plant cells that connect cytoplasm of adjacent cells are known as:
 - (A) Gap junctions
 - (B) Middle lamella
 - (C) Plasmotubule
 - (D) Plasmodesmata
- 20. Which of the following is true?
 - (A) Water moves from a point of higher water potential to a point of lower water potential.

- (B) Water moves from a point of lower water potential to a point of higher water potential.
- (C) Water movement does not depend on water potential.
- (D) All statements are true.
- 21. Which pair of areas within a chloroplast will show the steepest pH gradient between them?
 - (A) DNA and stroma
 - (B) ribosome and stroma
 - (C) stroma and the space between the outer and inner membrane
 - (D) stroma and the thylakoid space within the thylakoid membrane
- 22. Which statement correctly outlines some of the main events in photosynthesis?
 - (A) A 5C carbohydrate accepts carbon dioxide and is then reduced by NADPH derived from photophosphorylation.
 - (B) A 3C carbohydrate is regenerated and reduced by hydrogen molecules derived from photophosphorylation.
 - (C) Photolysis uses light to produce reduced NADP and oxygen which are used to reduce a 3C carbohydrate.
 - (D) Photolysis produces NADPH and ATP which are used to reduce a 5C carbohydrate.

- 23. What name is given to an assembly of several hundred accessory pigment molecules around a molecule of chlorophyll-a?
 - (A) photolysis cluster
 - (B) photoreaction centre
 - (C) photosystem
 - (D) photophosphorylation
- 24. Which of these cannot help us differentiate between C_3 and C_4 plants?
 - (A) Carbon dioxide acceptor molecule
 - (B) Presence of Kranz anatomy
 - (C) Photorespiration
 - (D) Number of chloroplasts
- 25. What is the first step of the Calvin pathway?
 - (A) Regeneration
 - (B) Reduction
 - (C) CO₂ fixation
 - (D) Synthesis of sugar
- 26. What is the most abundant enzyme in the world?
 - (A) Papain
 - (B) Alpha amylase
 - (C) RuBisCO
 - (D) Horse radish peroxidase

- 27. Why is carbon dioxide fixation decreased in some C_3 plants?
 - (A) Phosphoglycerate formation
 - (B) Unavailability of RuBP
 - (C) Oxygen binds to RuBisCO
 - (D) Oxygen binds to RuBP
- 28. Which of these are synthesized during photorespiration?
 - (A) NADPH
 - (B) ATP
 - (C) CO₂
 - (D) Sugars
- - (A) Respiration
 - (B) Food synthesis
 - (C) Photosynthesis
 - (D) Light synthesis
- 30. Which of the following is the correct equation of photosynthesis?
 - (A) $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$
 - (B) $12H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$
 - (C) $6CO_2 + 6O_2 \rightarrow C_6H_{12}O_6 + 12H_2O$
 - (D) $6CO_2 \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$

31.	Why is light energy used in	35.	Which of these statements is incorrect			
	photosynthesis?	regarding the biosynthetic phase of				
	(A) Reduction of H ₂ O		photosynthesis?			
	(B) Reduction of CO ₂		(A) It depends on carbon dioxide and			
	(C) Activation of chlorophyll		water.			
	(D) Oxidation of C ₆ H ₁₂ O ₆		(B) It depends on the products of light			
32.	The stroma contains a number of		reaction.			
32.	made up of disc-like		(C) ATP and NADPH are used.			
	-		(D) Sugars are synthesized.			
	(A) grana, thylakoids	36.	What is the full form of PGA ?			
	(B) grana, stroma		(A) 2-phosphoglyceric acid			
	(C) thylakoids, grana		(B) 2-phosphoglutamic acid			
	(D) stroma, grana		(C) 3-phosphoglutamic acid			
33.	The name of the scheme given to		(D) 3-phosphoglyceric acid			
	the transport of electrons is called	37.	How many carbon atoms does OAA			
	as		contain ?			
	(A) Z scheme		(A) 3			
	(B) W scheme		(B) 2			
	(C) Y scheme		(C) 4			
	(D) E scheme		(D) 1			
34.	is the only product in	38.	Which is the first product of CO ₂			
	cyclic photophosphorylation.		fixation in the C ₃ pathway?			
	(A) ADP		(A) NADPH			
	(B) ATP		(B) OAA			
	(C) Hydrogen		(C) ATP			
	(D) Oxygen		(D) PGA			

(7)

Set-A

39.	What is the primary acceptor of CO2 in	43.	Statement A : Legume-bacteria
	photosynthesis?		relationship is an example of symbiotic
	(A) ATP		biological nitrogen fixation.
	(B) PGA		Statement B : The association is
	(C) RuBP		represented by formation of root knots.
			(A) Both the Statements are true.
	(D) OAA		(B) Both the Statements are false.
40.	Which of these is not a stage of the		(C) Statement A is true but Statement
	Calvin's cycle ?		B is false.
	(A) Carboxylation		(D) Statement B is true but Statement
	(B) Reduction		A is false.
		44.	Which is the first stable product of
) Regeneration		nitrogen fixation ?
	(D) Oxidation		(A) N ₂
41.	For every carbon dioxide molecule used		(B) NH ₃
	up in the Calvin's cycle,		(C) NH ₄ ⁺
	molecules of ATP are required.		(D) NO_3^-
	(A) 4		(D) NO_3
	(B) 2	45.	Statement A: Nodule that arises from
			root hair cells contains enzyme
	(C) 1		nitrogenase.
	(D) 3		Statement B: The nodule gets it pink
42.	What is the atmospheric concentration of		color from nitrogenase.
	carbon dioxide?		(A) Both the Statements are true.
			(B) Both the Statements are false.
	(A) 0.3-0.4%		(C) Statement A is true but Statement
	(B) 3-4%		B is false.
	(C) 0.03-0.04%		(D) Statement B is true but Statement
	(D) 0.003-0.004%		A is false.

- 46. Which enzyme catalyses the process of transamination?
 - (A) Lipase
 - (B) Nitrogenase
 - (C) Transaminase
 - (D) Glutamate dehydrogenase
- 47. Rhizobium root nodules in legume plants:
 - (A) fix N_2 from the air.
 - (B) nitrify N_2 from the air.
 - (C) nitrify ammonia from the air.
 - (D) fix ammonia from the air.
- 48. **Statement A :** Nitrogenase is a Cu-Mn protein.

Statement B : It catalyses the conversion of atmospheric nitrogen to the form absorbed directly by plants.

- (A) Both the Statements are true.
- (B) Both the Statements are false.
- (C) Statement A is true but Statement B is false
- (D) Statement B is true but Statement A is false.
- 49. **Statement A**: In reductive amination, NH_4^+ reacts with α -ketoglutaric acid to form asparagine.

Statement B : The process takes place in presence of glutamate dehydrogenase.

- (A) Both the Statements are true.
- (B) Both the Statements are false.
- (C) Statement A is true but Statement B is false.
- (D) Statement B is true but Statement A is false.

- 50. Number of ATP required to convert 1 molecule of nitrogen into 2 molecules of ammonia:
 - (A) 6
 - (B) 8
 - (C) 12
 - (D) 16
- 51. Leghaemoglobin is present in the root nodules of legumes. What is the function of Leghaemoglobin?
 - (A) Oxygen removal
 - (B) Inhibition of nitrogenase activity
 - (C) Expression of nif gene
 - (D) Nodule differentiation
- - (A) Nostoc
 - (B) Azolla
 - (C) Salvinia
 - (D) Salvia
- 53. Which of the following is correct for nitrifying bacteria?
 - (A) They convert free nitrogen to nitrogen compounds
 - (B) They oxidize ammonia to nitrates
 - (C) They reduce nitrates to free nitrogen
 - (D) They convert proteins into ammonia

54.	This	element plays a key role in the	58.	Which of the following is not true for		
	nitrogen fixation:			biological nitrogen fixation in		
	(A)	Manganasa		leguminous plants ?		
	(A)	Manganese		(A) Nitrogenase may require oxygen		
	(B)	Molybdenum		for its functioning		
	(C)	Zinc		(B) Nitrogenase is Mo-Fe protein		
	(D)	Copper		(C) Leghaemoglobin is a pink coloured		
55.	Cells	where nitrogen fixation takes place		pigment (D) Nitrogenase helps to convert		
	in No	ostoc are known as		nitrogen gas into ammonia		
	(A)	Hormogonia	59.	Read the following statements and select		
	(B)	Heterocysts		the correct sequence of steps during symbiotic nitrogen fixation :		
	(C)					
	(D)			(1) Interaction between Rhizobium and		
	(-)			Leguminous plant		
56.	Whic	ch one of the following is not a		(2) Root nodule formation		
	nitro	gen fixing organism ?		(3) Formation of ammonia		
	(A)	Anabaena		(4) Leghaemoglobin		
	(B)			(5) Amino acid synthesis		
	, ,			(A) $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4$		
	(C)			(B) $2 \rightarrow 1 \rightarrow 4 > 5 \rightarrow 3$		
	(D)	Pseudomonas		(C) $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$		
57.	A n	itrogen fixing microbe associated		(D) $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 5$		
	with	Azolla in rice fields is:	60.	During nitrogen fixation, nitrite is		
	(A)	Spirulina		oxidized to nitrate by the bacterium:		
		Anabaena		(A) Nitrosomonas		
	(B)			(B) Pseudomonas		
	(C)) Frankia		(C) Nitrobacter		
	(D)	Tolyprothrix		(D) Thiobacillus		

(10)

Set-A

61.	Name the phenolic compound present in	66.	Na	me the class	of secon	ndary me	etabolites
	tea:		wh	ich is charact	erized b	y the pre	esence of
	(A) Flavonoids		the	hydroxyl g	group w	ith an	aromatic
	(B) Lignans		rin	g:			
	(C) Stilbene		(A)) Glycoside	S		
	(D) Neolignans		(B)	•			
62.	Metabolic intermediates found in living		(C)	Alkaloids			
	system which are essential for growth		(D)				
	and life is called		(2)	, responds			
	(A) Saponins	67.	Giv	ven below a	re vario	ous plan	t natural
	(B) Tannins		pro	ducts and the	eir basic	structura	ıl unit :
	(C) Secondary metabolite			List-I		List-l	II
	(D) Primary metabolites			(Natural		(Basic U	J nit)
63.	Which of the following is NOT the class			Products)			
	of secondary metabolite ?		(a)	Phenolics	(i)	Five-ca	rbon
	(A) Amino acids					isoprene	e unit
	(B) Terpenes		(b)	Alkaloids	(ii)	Glucose	
	(C) Phenolics					B-D-gli	d by O- icosyl
	(D) Alkaloids					linkage	
64.	How many isoprene units, are there in		(c)	Terpenoids	(iii)	Nitroge containi	
	sesquiterpenes?		(d)	Cyanogenic	(iv)	Aromat	ic arene
	(A) 1			glycoside		_	ith OH
	(B) 2		Wh	ich of the foll	lowing (group	anracanto
	(C) 3			correct mate	Ū	•	•
	(D) 8				n or na	iurai pro	uuci anu
65.	Beta-carotene, a plant pigment falls		tne	basic unit?			
	under which of the following classes of			(a)	(b)	(c)	(d)
	terpenes?		(A)	iv	i	iii	ii
	(A) Triterpenes		(B)	iii	ii	i	iv
	(B) Tetraterpenes		(C)	iii	i	iv	ii
	(C) Diterpenes						
	(D) Polyterpenes		(D)	iv	iii	i	ii
L020	0803T (11)					Set-A

เกวก	803T (12		Set-A		
	(D) All of the above		(D) Citrus		
	(C) alpha glucosidase		(C) Grapes		
	(B) starch phosphorylase		(B) Pineapple		
	(A) alpha amylase		(A) Tomato		
	fruit ripening is mediated by:		fruit ?		
72.	Hydrolysis of starch to sugars during	76.	Which of the following is climacteric		
	(D) All of the above				
	(C) Change in size		(D) Limonoids		
	(B) Conversion of starch to sugar		(C) Beta-carotene		
	(A) Change in colour and odour		(B) Azadirachtin		
71.	Fruit ripening is associated with:		(A) Quercetin		
	(D) ten		citrus fruit.		
	(C) five		(C30) well known as bitter substances in		
	(B) two	75.	is a group of triterpenes		
	(A) one		(b) Mango		
	isoprenoids).		(D) Mango		
70.	Terpenes are formed by the fusion of		(C) Banana		
70	` '		(B) Pineapple		
	(D) Gibberellins		(A) Apple		
	(B) Auxin(C) Cytokinin		climacteric fruits?		
	(A) Jasmonic acid(B) Auxin	74.	Which of the following are not		
	that activates many defense responses.		(D) Unripe		
69.	is a plant stress hormone		(C) Ripe		
	(D) Terpenes		(B) Non-climacteric		
	(C) Alkaloids		(A) Climacteric		
	(B) Phenolics		-		
	(A) Glycosides		production are known as:		
	attached to an aromatic ring:		and dp not respond to enhanced ethylene		
	pathway; it contains a hydroxyl group		not dramatically increase during ripening		
68.	Created through the shikimic acid	73.	Fruits in which rate of respiration does		

77.	The organic acids that decrease with	82.	Indole-3-acetic acid is the most common
	ripening of fruits include:		naturally occurring plant hormone of
	(A) malic acid		class.
	(B) citric acid		(A) Gibberellin
	(C) quinic acid		
	(D) All of the above		(B) Auxin
78.	Ethylene biosynthesis itself is controlled		(C) Ethylene
	by ethylene in fruits.		(D) Cytokinin
	(A) Climacteric	83.	is a gaseous plant
	(B) Non-climacteric	03.	
	(C) Ripe		hormone.
	(D) Unripe		(A) IBA
79.	The onset of fruit ripening leads to		(B) Ethylene
	activation of:		(C) Abscisic acid
	(A) nif gene		(D) NAA
	(B) ACC synthase genes		
	(C) oxidases	84.	Which of these is not a function of auxin?
	(D) flippases		(A) inducing callus formation
80.	is a secondary metabolite		(B) inducing dormancy
	obtained from lemon.		(C) enhancing cell division
	(A) Quercetin		(D) maintaining apical dominance
	(B) Azadirachtin		
	(C) Beta-carotene	85.	In tissue culture experiment to initiated
	(D) Limonene		shoots from the undifferentiated mass of
81.	Carotenoids and Anthocyanin pigments		cell the medium must contain:
	are examples of :		(A) Low auxin and high cytokinin
	(A) Primary metabolites		(B) High auxin and high cytokinin
	(B) Secondary metabolites		
	(C) Protein		(C) High auxin and low cytokinin
	(D) Sugar		(D) Low auxin and low cytokinin

(13)

Set-A

- 86. Among the following which is NOT involved in the plant defence signaling pathway?
 - (A) Gibberellic acid
 - (B) Ethylene
 - (C) Salicylic acid
 - (D) Jasmonic add
- 87. Among the following which hormone can induce flowering in short day plants grow under long duration of light?
 - (A) Gibberellic acid
 - (B) Auxins
 - (C) Cytokinin
 - (D) Abscisic acid
- 88. Parthenocarpic tomato fruits can be produced by:
 - (A) Removing and vettum of flowers before pollengrains are released.
 - (B) Treating the plants with low concentrations of gibberellic acid and auxins.
 - (C) Raising the plants from vernalized seeds.
 - (D) Treating the plants with phenylmercuric acetate.

- 89. Which one of the following is NOT a plant hormone?
 - (A) 2, 4-D
 - (B) Abscisic acid
 - (C) Nitric oxide
 - (D) Jasmonates
- 90. Agrobacterium tumefaciens causes crown gall diseases in dicot plants. Which phytohormone genes are present on T-DNA?
 - (A) Auxin and cytokinin
 - (B) Auxin only
 - (C) Cytokinin only
 - (D) Cytokinin and brassinosteroids
- 91. How does pruning help in making hedges dense?
 - (A) It induces the differentiation of new shoots from the rootstock.
 - (B) It frees auxillary buds from apical dominance.
 - (C) The apical shoot grows faster after pruning.
 - (D) It releases wound hormones.

92.	Gibberellic acid stimulates seed	97.	Which of the following is a terpene		
	germination in monocots by the		derivative ?		
	activation of digestive enzymes acting		(A) Ethylene		
	on:		(B) ABA		
	(A) Endosperm				
	(B) Aleurone layer		(C) Auxin		
	(C) Embryo		(D) GA		
	(D) Cotyledons	98.	Which of the following hormones is a		
93.	IAA stands for :	, , ,	stress hormone?		
	(A) lodine Acetic Acid				
	(B) Indole Acetic Acid		(A) Ethylene		
	(C) Initiator Acetic Acid		(B) ABA		
	(D) Iron Acetic Acid		(C) Auxin		
94.	The 'foolish seedling' discovery of rice		(D) GA		
	led to the discovery of:	99.	Which of the following hormones is used		
	(A) Gibberellic acid		to induce morphogenesis in plant tissue		
	(B) Auxins		culture ?		
	(C) Cytokinins				
	(D) Ethylene		(A) Cytokinins		
95.	A secondary metabolite that also serves		(B) Ethylene		
	as a commercial insect control agent is:		(C) Auxin		
	(A) Azadirachtin		(D) ABA		
	(B) Limonene	100	TT 1 1 1 1 1 6		
	(C) Citral	100.	1		
	(D) Saponin		enhancement of the respiration rate of		
96.	The concentration of auxin is highest		fruits thereby leading to its early ripening		
<i>7</i> 0.	in		is		
			(A) Auxin		
			(B) GA ₃		
	(B) stem		(C) Ethylene		
	(C) growing tips (D) vescular hundles		(D) ABA		
	(D) vascular bundles		(D) ADA		

(15)

Set-A

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

Q.3 A \bigcirc C D

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में
सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

 प्रश्न 1 (A)
 (C)
 (D)

 प्रश्न 2 (A)
 (B)
 (D)

 (A)
 (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।