Roll No. \qquad
O. M. R. Serial No.

M. Sc. (Electronics) (Second Semester) (NEP)

 EXAMINATION, 2022-23

 EXAMINATION, 2022-23}

ELECTRONICS CIRCUIT

Time : 1:30 Hours]

Questions Booklet
Series
A
[Maximum Marks : 75

Instructions to the Examinee :

1. Do not open the booklet unless you are asked to do so.
2. The booklet contains 100 questions. Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet. All questions carry equal marks.
3. Examine the Booklet and the OMR AnswerSheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

1. प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(Only for Rough Work)

1. Oscillator differs from an amplifiers because it \qquad .. .
(A) Requires no input signal
(B) Requires no d.c. supply
(C) Always has the same input
(D) Has more gain
2. Indentify the common element present inside all voltage regulator ICs from the given options:
(A) Series pass transistor
(B) Filter capacitor
(C) Load resistor
(D) Transformer
3. The power dissipation of the pass transistor during regulation is equal to the collector-emitter voltage multiplied by the :
(A) Fullback current
(B) Base current
(C) Load current
(D) Zener current
4. The output of a particular OP-amp increases 9 V in $12 \mu \mathrm{~s}$. The slew rate is :
(A) $90 \mathrm{~V} / \mu \mathrm{s}$
(B) $1.5 \mathrm{~V} / \mu \mathrm{s}$
(C) $0.67 \mathrm{~V} / \mu \mathrm{s}$
(D) None of the above
5. The voltage between the base-emitter terminals of current booster may by used to switch it on :
(A) A zener impedance
(B) A current-sensing resistor
(C) Another transistor
(D) A load resistor
6. Compared to the ripple is a regular, the ripple out of regulars is :
(A) Much larger
(B) Equal in value
(C) Much smaller
(D) Impossible to determine
7. What is IC 723 ?
(A) A half-ware rectifier
(B) A voltage regulator
(C) A full-wave rectifier
(D) A clipper
8. Which of these is a not drawback of Zener diode shunt regulator?
(A) Variation in load current needs to be minimal
(B) The output voltage can vary with temperature
(C) It is difficult to design
(D) The output voltage is fixed
9. Which of the following falls under the category of three-pin voltage regulator ICs ?
(A) Fixed voltage regulator
(B) Both fixed voltage regulators and variable current regulators
(C) Adjustable AC voltage regulator
(D) Variable current regulators
10. What is the standard form of AVR ?
(A) Adjustable Voltage Regulator
(B) Automatic Voltage Regulator
(C) Amplified Voltage Regulator
(D) None of the above
11. A certain regulator has a non-load voltage of 6 V and a full-load output of 5.82 V . What is the load regulation?
(A) 87%
(B) 72%
(C) 09%
(D) None of the above
12. In a linear IC voltage regulator, series transistor always always operates in region.
(A) Cut-off
(B) Active
(C) Saturation
(D) All of the above
13. What is the about the breakdown voltage in a Zener diode ?
(A) It is approximately constant
(B) It decreases when load current increases
(C) It equals current times the resistance
(D) It destroys the diode
14. Which one is type of linear voltage regulator?
(A) Step-down
(B) Inverter
(C) Series
(D) All of the above
15. When load current is zero, the Zener current will be \qquad . .
(A) Zero
(B) Minimum
(C) Maximum
(D) None of the above
16. The load voltage is approximately constant when a Zener diode is \qquad .
(A) Operating in the breakdown region
(B) Forward biased
(C) Unbiased reverse
(D) Reverse biased
17. The ratio of (no load output voltage-full load output voltage/full load output voltage)* 100% is known as regulation :
(A) Load
(B) Line
(C) Both (A) and (B)
(D) None of the above
18. Voltage regulator require :
(A) Only line regulation
(B) Only load regulation
(C) A constant load
(D) Load and line regulation
19. What type of regulators offer inherent short-circuits protection?
(A) Switching regulators
(B) Three-terminal regulators
(C) Series regulators
(D) Shunt regulators
20. In the power level of an amplifier reduces of half, the db gain will fall by \qquad .
(A) 10 db
(B) 5 db
(C) 3 db
(D) 2 db
21. The \% load regulation of power supply should be ideally \qquad and practically.
(A) small, zero
(B) zero, small
(C) large, zero
(D) zero, large
22. When negative voltage feedback is applied to amplifier, its voltage gain
(A) is reduced
(B) is increased
(C) remains the same
(D) None of the above
23. If the output of an amplifier is 10 V and 100 mV from the output if fed back to the input, then feedback fraction is \qquad .
(A) 10
(B) 1
(C) 01
(D) 15
24. Which one of the following oscillators is a type of RC oscillator ?
(A) Wien bridge
(B) Hartley
(C) Phase shift
(D) Both (A) and (B)
25. The operation of the crystal oscillators is based on the \qquad effect.
(A) Piezoelectric
(B) Crystal
(C) Wien bridge
(D) All of the above
26. Which one of the following oscillators provides 180 degrees phase shift in a feedback network?
(A) Wien bridge oscillator
(B) RC phase shift oscillator
(C) Both (A) and (B)
(D) None of the above
27. Transformer coupling is used for
\qquad amplification.
(A) Power
(B) Voltage
(C) Current
(D) None of the above
28. If a three-state amplifier has individual stage gains of $10 \mathrm{db}, 5 \mathrm{db}$ and 12 db , then total gain in db is \qquad
(A) 14 db
(B) 27 db
(C) 27 db
(D) 600 db
29. \qquad are building blacks of regulated

DC power supply :
(A) Step down transformer
(B) Rectifier, DC filter
(C) Regulator
(D) All of the above
30. \qquad is a fixed frequency oscillator :
(A) Colpitt's oscillator
(B) Crystal oscillator
(C) Hartley-oscillator
(D) Phase-shift oscillator
31. The hold-up time of linear power supply is around \qquad . .
(A) $1 \mathrm{~ms}-2 \mathrm{~m}$
(B) $10 \mathrm{~ms}-20 \mathrm{~ms}$
(C) $20 \mathrm{~ms}-30 \mathrm{~ms}$
(D) None of the above
32. A wein bridge oscillator was \qquad feedback.
(A) Only positive
(B) Only negative
(C) Both positive and negative
(D) None of the above
33. An important limitation of a crystal oscillator :
(A) Its high Q
(B) Its low output
(C) Its high output
(D) Less availability of quartz crystal
34. Virtual ground of an op-amp means :
(A) Terminal is grounded directly
(B) The terminal is not physically grounded but terminal voltage is zero due to other terminal is connected to the ground due to opamp properties :
(C) Both (A) and (B)
(D) None of the above
35. The gain of an amplifier without feedback is 100 db . If a negative feedback of 3 db is applied, the gain of the amplifier will become \qquad .
(A) 5 db
(B) 97 db
(C) 103 db
(D) 300 db
36. The output obtained by the rectifier is \qquad .
(A) Pulsating DC
(B) Pulsating AC
(C) Non-pulsating AC
(D) None of the above
37. Operating point represents \qquad .
(A) Values of I_{C} and V_{CE} when signal is applied
(B) The magnitude of signal
(C) Zero signal values of I_{C} and V_{CE}
(D) None of the above
38. For good stabilsation in voltage divider bias, the current I_{1} flowing through R_{1} and R_{2} should be equal to or greater than :
(A) $2 I_{B}$
(B) $3 \mathrm{I}_{\mathrm{B}}$
(C) $4 I_{B}$
(D) $10 \mathrm{I}_{\mathrm{B}}$
39. In breadkown region \qquad diode acts like battery.
(A) Laser
(B) Zener
(C) Avalanche
(D) None of the above
40. The number of stages that can be directly coupled is limited because \qquad .
(A) Change is temperatures cause thermal instability
(B) Circuit becomes heavy and costly
(C) It becomes difficult of basic the circuit
(D) None of the above
41. For audio applications, power amplifiers are placed at \qquad .
(A) Initial Stage
(B) Middle Stage
(C) Both (A) and B
(D) Final Stage
42. Which class of power amplifier conducts for the full duration of the cycle?
(A) Class A
(B) Class B
(C) Class AB
(D) All mentioned above
43. Which of the following is true as per Barkhausen criteria for sustainable oscillations for amplifier gain of and the feedback β of the feedback network ?
(A) $\mathrm{A} \geq \beta$
(B) $\mathrm{A} \geq(1 / \beta)$
(C) $\mathrm{A}<(1 / \beta)$
(D) $\mathrm{A} \beta=0$
44. Class \qquad amplifiers are normally operated in push-pull configuration in order to produce an output that is replica of the input.
(A) A
(B) B
(C) c
(D) AB
45. F feedback circuit usually employs \qquad network.
(A) Capacitive
(B) Resistive
(C) Inductive
(D) None of the above
46. What is the main agenda of Power amplifiers?
(A) Supply Large Powers
(B) To Amplify Currents
(C) Handle Large Currents
(D) Both (A) and (B)
47. What type of coupling is used in Power Amplifiers ?
(A) Transformer Coupling
(B) Capacitor Coupling
(C) Resistor Coupling
(D) RC Coupling
48. Power amplifiers have \qquad at output.
(A) High Resistance
(B) High Inductance
(C) Harmonic Distortion
(D) Distortionless
49. What are the various power transistors ?
(A) MOSFETs
(B) Induction Transistors (Static)
(C) BJTs
(D) All mentioned above
50. When current feedback (negative) is applied to an amplifier, its output impedance \qquad .
(A) Remains the same
(B) Is decreased
(C) Is increased
(D) None of the above
51. The process to make the operating point independent of changes in temperature and other variations are known as \qquad .
(A) Stabilization
(B) Biasing
(C) Rectification
(D) Modulation
52. For a transistor to function as amplifier the DC load is \qquad than that of AC load.
(A) Lesser
(B) More
(C) Same as
(D) Can't say
53. Collector his method is also known as feedback.
(A) Self-bias
(B) Self-biasing with negative
(C) Self-biasing with positive
(D) None of the above
54. In order to determine $h_{f e}$ and $h_{i e}$ parameter of a transistor is an a.c. short-circuited.
(A) Input as well as output
(B) Input
(C) Output
(D) None of the above
55. The gain of transformer-coupled amplifier is \qquad
(i) low at low frequencies
(ii) low at high frequencies
(iii) constant at high frequencies
(A) I only
(B) I and II only
(C) II and III only
(D) I and III only
56. Darlington pair connection is combination.
(A) $\mathrm{CC}-\mathrm{CC}$
(B) CE-CE
(C) CE-CC
(D) $\mathrm{CC}-\mathrm{CB}$
57. The dimension of $h_{i e}$ parameter are \qquad
(A) Farad
(B) Ohm
(C) Mho
(D) None of the above
58. Which capacitance/s in hybrid π model represent/s the storage of excess minority carries at the base emitter junction?
(A) Transitions capacitance
(B) Diffusion capacitance
(C) Both (A) and (B)
(D) None of the above
59. Why do the internal capacitances of transistor at low frequencies treated as open circuits by completely neglecting their effects in analysis ?
(A) Due to low reactance
(B) Due to moderate reactance
(C) Due to high reactance
(D) None of the above
60. We cannot use h-parameter model in high frequency analysis because \qquad .
(A) Junction capacitance have to be included in it
(B) They all can be ignored for high frequencies
(C) Junction capacitance are not included in it
(D) AC analysis is difficult for high frequency using it
61. The h parameter approach gives correct results for \qquad .. .
(A) Large signals only
(B) Small signals only
(C) Both small and large signals
(D) None of the above
62. A transistor behaves as linear device for \qquad .
(A) Small signals only
(B) Large signals only
(C) Both and large signals
(D) None of the above
63. Emitter Follower is a :
(A) Current feedback
(B) Voltage feedback
(C) Both voltage and current feedback
(D) None of the above
64. Stability factor should be \qquad to achieve stability.
(A) Small
(B) Medium
(C) Large
(D) Maximum
65. The change in temperature makes the Q-point to shift because of \qquad .
(A) Change in β
(B) Change in resistance values of the circuit
(C) Change in V_{CC}
(D) Change is $\mathrm{I}_{\text {CBO }}$
66. The parameter $h_{i e}$ stand for input impedance is \qquad .
(A) CB arrangement with output shorted
(B) CC arrangement with output shorted
(C) CE arrangement with output shored
(D) None of the above
67. What are the devices used for bias compensation?
(A) Transistor
(B) Thermistor
(C) Diode
(D) All (A), (B) and (C)
68. What is the most popular method of biasing?
(A) Collector-feedback bias
(B) Base-resistor bias
(C) Data insufficient
(D) Potential-divider bias
69. If the operating point change, the h parameter of transistor \qquad . .
(A) Do not change
(B) May or may not change
(C) Also change
(D) None of the above
70. Q-point lying on the center of the DC load line of the amplifier circuit, these amplifiers are said to be \qquad ..
(A) Fixed biased
(B) Midpoint biased
(C) Collector biased
(D) Base biased
71. An emitter followers has \qquad input impedance.
(A) Zero
(B) Low
(C) High
(D) None of the above
72. A differential amplifier
(A) is a part of an Op-amp
(B) has one input and one output
(C) has multiple outputs
(D) Both (A) and (B)
73. OP-Amp is a basic building block of type electronic circuits.
(A) Digital
(B) Analog
(C) Both (A) and (B)
(D) None of above
74. A power supply which has voltage regulation of \qquad is unregulated power supply.
(A) 0%
(B) 5%
(C) 8%
(D) 10%
75. A Zener diode that has very narrow depletion layer will breakdown by \qquad mechanism.
(A) Zener
(B) Avalanche
(C) Both avalanche and Zener
(D) None of above
76. A Schmitt trigger circuit achieves hysteresis by utilizing :
(A) The Barkhausen principle 4.
(B) The magnetic properties of a transformer core
(C) Avalanche multiplication in Zener diode
(D) Regenerative positive feedback
77. When a differential amplifier is operated single-ended, \qquad .
(A) both input are connected together
(B) the output is grounded
(C) one output is grounded and signal is applied to the other
(D) the output is not inverted
78. The use of negative feedback \qquad
(A) makes linear operation possible
(B) reduced the voltage gain of an Opamp
(C) makes the Op-amp oscillate
(D) answers (A) and (B)
79. The tail current of a differential amplifier is \qquad .
(A) equal to the difference in base currents
(B) half of ether collector current
(C) equal to either collector current
(D) two times either collector current
80. The Op-amp can amplify :
(A) a.c. signals only
(B) d.c. signals only
(C) both a.c. and d.c. signals
(D) neither d.c. nor a.c. signals
81. A voltage follower \qquad ...
(A) is non-inverting
(B) has a voltage gain of 1
(C) has no feedback resistor
(D) has all of these
82. A certain non-inverting amplifier has R_{i} of $1 \mathrm{k} \Omega$ and F_{f} of $100 \mathrm{k} \Omega$. The closedloop voltage gain is \qquad .. .
(A) 100,000
(B) 1000
(C) 101
(D) 100
83. With zero volts on both inputs, an Op-amp ideally should have a output \qquad
(A) equal to the negative supply voltage
(B) equal to the positive supply voltage
(C) equal to zero
(D) equal to CMRR
84. $\quad \mathrm{I} \mathrm{A}_{\mathrm{DM}}=3500$ and $\mathrm{A}_{\mathrm{CM}}=0.35$, the CMRR is \qquad .
(A) 10,000
(B) 1225
(C) 80 dB
(D) Both (A) and (C)
85. What is the output waveform?

(A) triangle wave
(B) square wave
(C) sawtooth wave
(D) sine wave
86. A certain OP-amp has bias currents of $50 \mu \mathrm{~A}$. The input offset current is \qquad . .
(A) $49.7 \mu \mathrm{~A}$
(B) $99.3 \mu \mathrm{~A}$
(C) 700 nA
(D) None of the above
87. An ideal operational amplifier has :
(A) infinite output impedance
(B) infinite bandwidth
(C) zero input impedance
(D) All of the above
88. The Schmitt trigger can be used as which of the following?

1. Square-wave generator
2. Comparator
3. Astable miltivibrator

Select the correct answer using the code given below.
(A) 1 and 3 only
(B) 1 and 2 only
(C) 2 and 3 only
(D) 1,2 and 3 only
89. How does an op-amp function with an input resistor connected to the inverting terminal and a diode in the feedback circuit?
(A) A logarithmic amplifier
(B) An ideal full-wave rectifier
(C) An exponential amplifier
(D) An ideal half-wave rectifier
90. The most commonly used amplifier in sample and hold circuit is :
(A) an reverting amplifier with a gain of 100
(B) an inverting amplifier with a gain of 10
(C) a unity gain non-inverting amplifier
(D) a unity gain inverting amplifier
91. if the differential voltage gain and the common mode voltage gain of a differential amplifier are 48 dB and 2 dB respectively, then its common mode rejection ratio is :
(A) 23 dB
(B) 46 dB
(C) 25 dB
(D) 50 dB
92. Consider the op-amp circuit shown in the figure below.

If $\mathrm{V}_{1}=0.2 \mathrm{~V}, \mathrm{~V}_{2}=0.6 \mathrm{~V}$ and $\mathrm{V} 0=-7$, and the op-amp is ideal, the value of R_{1} is :
(A) 10 kW
(B) 5 kW
(C) 15 kW
(D) 20 kW
93. What are the characteristics of an instrumentation amplifier?
(A) High CMRR
(B) High input resistance
(C) Low noise
(D) All of the above
94. For an Op-amp with negative feedback, the output is \qquad .. .
(A) equal to the input
(B) increased
(C) fed back to the inverting input
(D) fed back to the no inverting input
95. The input impedance of a differential amplifier equals r ' ${ }_{e}$ times
(A) β
(B) R_{E}
(C) R_{C}
(D) 2β
96. What instrument is used to amplify output signal of transducer?
(A) Peaking amplifier
(B) Instrumentation amplifier
(C) Differential amplifier
(D) Bridge amplifier
97. Which among the following is a nonlinear application of op-amp?
(A) Comparator
(B) V to 1 converter
(C) Instrumentation amplifier
(D) Precision rectifier
98. How to provide saturation current and temperature compensation in log-amp ?
(A) Applying input and reference voltage to separate log-amps
(B) Applying reference voltage alone to two different log-amps
(C) Applying input and reference voltage to same log-amps
(D) None of the mentioned
99. For an ideal comparator, what should be the value of the response time?
(A) Zero
(B) Unpredictable
(C) Infinite
(D) Unity
100. The figure shown below is a pin diagram of instrumentation amplifier.

(A) AD623
(B) LTC1100
(C) LT1102
(D) AD620
4. Four alternative answers are mentioned for each question as-A, B, C \& D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction :
Example:
Question :

Illegible answers with cutting and over-writing or half filled circle will be cancelled.
5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
9. There will be no negative marking.
10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.

Impt. : On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.
4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तरA, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है :

उदाहरण :
प्रश्न :

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।
5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाये।
8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
9. निगेटिव मार्किंग नहीं है।
10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।

