Roll No	 ••••				Question Booklet Number
O. M. R. Serial No.					

M. Sc. (Biochemistry) (Second Semester) EXAMINATION, 2022-23

PROTEIN CHEMISTRY AND ENZYMOLOGY

Paper Code						
В	C	Н	2	0	0	2

Time : 1:30 Hours]

Questions Booklet Series

Α

[Maximum Marks : 75

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 100 questions. Examinee is required answer to questions in the OMR Answer-Sheet provided and not in the question booklet. All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

1.	In competitive inhibition, inhibitors bear	5.	Number of iron atoms in one						
	a close structural similarity with the:		haemoglobin molecule are:						
	(A) Co-enzyme		(A) 1						
	(B) Co-factor		(B) 3						
	(C) Prosthetic group		(C) 4						
	(D) Substrate		(D) 8						
2.	"Ding Dang" regetion is the other name	6.	Example of a Pro-enzyme :						
۷.	"Ping Pong" reaction is the other name		(A) Pepsinogen						
	for:		(B) Trypsin						
	(A) Single-substrate reaction		(C) Chymotrypsin						
	(B) Single-displacement bi-substrate		(D) Lysine						
	reaction	7.	Which of the following is not a co-						
	(C) Double-displacement bi-substrate		enzyme?						
	reaction		(A) NAD						
			(B) NADP						
	(D) Lysine		(C) FAD						
3.	Ribozymes are:		(D) Mn^{++}						
	(A) RNA acting as enzymes	8.	Activity of allosteric enzymes is						
	(B) Ribose sugar acting as enzyme		influenced by:						
	(C) Antibodies acting as enzymes		(A) Allosteric modulators						
	(D) Protein acting as enzyme		(B) Allosteric site						
	(D) Frotein acting as enzyme		(C) Catalytic site						
4.	Holoenzymes is made of:		(D) None of the above						
	(A) Apoenzymes and Zymogen	9.	Feedback inhibition means:						
	(B) Apoenzyme and Co-enzyme		(A) Initial product inhibition						
	(C) Co-enzyme and Prosthetic group		(B) End product inhibition						
			(C) Enzymatic induction						
	(D) Prosthetic group and Co-factor		(D) None of the above						

10.	Enzyme acts best at a particular	14.	Which of the following statements is
	temperature called :		incorrect?
	(A) Catalytic temperature		(A) Enzymes are protein in nature
			(B) Enzymes are colloidal in nature
	(B) At normal body temperature		(C) Enzymes are thermolabile
	(C) Optimum temperature		(D) Enzymes are inorganic catalyst
	(D) None of the above	15.	Apoenzymes dissociates from co-
1.1	**		enzymes due to :
11.	Uncatalyzed reaction shows		(A) Change in pH
	activation energy.		(B) Change in temperature
	(A) Lower		(C) Change in substrate concentration
	(B) Higher		(D) Change in inhibitor concentration
		16.	Which of the following enzyme
	(C) Moderate		inhibitions shows decreased K _m value ?
	(D) Optimum		(A) Competitive inhibition
12.	Lock and Key model is also known as:		(B) Un-competitive inhibition
12.	Lock and Rey model is also known as .		(C) Non-competitive inhibition
	(A) Template model		(D) Feedback inhibition
	(B) Induced fit model	17.	Reversible covalent modification
	(C) Koshland's model		involves:
	(D) Enzyme-substrate interaction model		(A) Activation of proenzymes
	•		(B) Inhibition of proenzymes
13.	Which bond is not associated with		(C) Denaturation of proenzymes
	Enzyme-substrate interaction ?		(D) None of the above
	(A) Hydrogen bonds	18.	Combination of heam with O_2 is called:
	(B) Ionic bonds		(A) Oxyhaemoglobin
			(B) Oxidation
	(C) Di-sulfide bonds		(C) Oxygenation
	(D) Van der Waal force of attraction		(D) Oxidized haem

(4)

Set-A

19.	Adul	It haemoglobin contains	24.	Enzymes exist in the cells as:			
	poly	peptide ehains.		(A)	Solid		
	(A)	$2\alpha, 2\gamma$, ,			
	(B)	$2\alpha, 2\beta$		(B)	Crystals		
	(C)	$2\alpha, 2\delta$		(C)	Colloid		
	(D)	$2\beta, 2\gamma$		(D)	None of the above		
20.	In S	ickle cell anaemia, the defect lies in	25.	An e	nzyme brings about :		
	whic	ch polypeptide ?		(A)	Deduction in activation analysis		
	(A)	Alpha chain		(A)	Reduction in activation energy		
	(B)	Beta chain		(B)	Increase in reaction time		
	(C)	Gamma chain		(C)	Increase in activation energy		
	(D)	Delta chain		(D)	All the above		
21.	Apo	enzyme is a/an:					
	(A)	Protein	26.	Whic	ch of the following statements is		
	(B)	Carbohydrate		"NO	T' correct?		
	(C)	Vitamin		(A)	All enzymes are thermolabile		
	(D)	Amino acid		, ,	•		
22.	Coer	nzyme is :		(B)	All enzymes are biocatalysts		
	(A)	Always a protein		(C)	All enzymes are proteins		
	(B)	Often a metal		(D)	All proteins are enzymes		
	(C)	Always an inorganic compound	27	Г			
	(D)	Often a vitamin	27.	Enzy	mes bringing about hydrolysis of		
23.	Enzy	mes are named after their substrates		ester	s and peptides are :		
	-	dding suffix :		(A)	Transferases		
	(A)	-in		(B)	Lyases		
	(B)	-ase		(C)	Hydrolases		
	(C)	-ose		, ,	·		
	(D)	-sin		(D)	All of the above		

- 28. All of the following are the properties of enzymes except:
 - (A) Enzymes are stereo specific
 - (B) Enzymes remains unaltered after the reaction
 - (C) Most of the enzymes are proteins
 - (D) They are heat stable
- An enzyme that catalyzes the reactionA ↔ B changes the :
 - (A) Heat of reaction
 - (B) Entropy of reaction
 - (C) Equilibrium constant
 - (D) Rate of forward and backward reaction
- 30. Feature of the competitive inhibition include:
 - (A) V_{max} increases
 - (B) V_{max} decreases
 - (C) V_{max} remains constant
 - (D) None of the above
- 31. All is true about non-competitive inhibition except :
 - (A) V_{max} decreases
 - (B) K_m altered
 - (C) The inhibitor binds at a site different from the active site
 - (D) None of the above

- 32. Pyridoxal phosphate is a carrier of:
 - (A) Aldehyde group
 - (B) Hydride group
 - (C) Methyl group
 - (D) Amino group
- 33. Binding energy of the enzyme and substrate interaction at active site is used to:
 - (A) Lower substrate entropy and desolvation of the substrate
 - (B) Induces the distortion in substrate
 - (C) Induces conformational change in the enzyme active site
 - (D) All of the above
- 34. A higher activation energy of the reaction means :
 - (A) Higher reaction rate
 - (B) Slower reaction rate
 - (C) No reaction
 - (D) None of the above
- 35. Allosteric inhibition is a kind of:
 - (A) Competitive inhibition
 - (B) Uncompetitive inhibition
 - (C) Suicidal inhibition
 - (D) Non-competitive inhibition

- 36. Enzymes commonly employ one of more of the following strategies to catalyze specific reactions:
 - (A) Acid-base catalysis
 - (B) Covalent catalysis
 - (C) Metal ion catalysis
 - (D) All of the above
- 37. RNase used one of the following mechanism of catalysis:
 - (A) Acid-base catalysis
 - (B) Covalent catalysis
 - (C) Metal ion catalysis
 - (D) All of the above
- 38. To treat the methanol poisoning in a patient, ethanol is administered intravenously. Ethanol is of alcohol dehydrogenase:
 - (A) Competitive inhibitor
 - (B) Uncompetitive inhibitor
 - (C) Allosteric inhibition
 - (D) Non-competitive inhibition
- 39. Uncompetitive inhibition has:
 - (A) Constant K_m and increased V_{max}
 - (B) Constant K_m and decreased V_{max}
 - (C) Decreased K_m and decreased V_{max}
 - (D) Decreased K_m and increased V_{max}

- 40. Chymotrypsin stabilizes the tetrahedral oxyanion transition states of the substrate in the active site. The amino acids important for oxyanion hole are:
 - (A) Amide nitrogen of Glycine 193 and Serine 195
 - (B) Amide nitrogen of Histidine 57 and Aspartate 102
 - (C) Carbonyl carbon of Histidine 57 and Aspartate102
 - (D) Amide nitrogen of Arginine 57 and Aspartate 102
- 41. The catalytic reactive group in the active site of RNase are :
 - (A) His 12 and Arg 119
 - (B) His12and His 119
 - (C) Arg12and Arg 119
 - (D) Lys12 and Lys 119
- 42. The catalytic activity of an enzyme is restricted to its small portion called :
 - (A) Active site
 - (B) Passive site
 - (C) Allosteric site
 - (D) All choices are correct

43.	An	activated	enzyme	made	of	47.	In h	uman body the optimum temperature
	poly	peptide chain	and a co-fa	actor is:			for e	enzymatic activities is:
	(A)	Coenzyme					(A)	37°C
	(B)	Substrate					(B)	40°C
	(C)	Apoenzyme)				(C)	25°C
	(D)	Holoenzyme					(D)	30°C
	(D)	Holochzym	C			48.	Com	apetitive inhibitors stop an enzyme
44.	Kosh	land in 1959	proposed:				from	working by:
	(A)	Fluid mosai	c model				(A)	changing the shape of the enzyme
	(B)	Induce fit m	nodel				(B)	merging with the substrate instead
	(C)	Lock and ke	ey model				(C)	blocking the active site of the
	(D)	Reflective in	ndex model					enzyme
	_						(D)	combining with the product of the
45.	·	mes are lar		•••••	1n			reaction
	their	chemical nat	ure.			49.	The	enzymes are sensitive to:
	(A)	Lipids					(A)	Changes in pH
	(B)	Steroids					(B)	Changes in temperature
	(C)	Proteinaceo	us				(C)	Both (A) and (B)
	(D)	All (A), (B)	and (C)				(D)	None of the above
46.	Who	proposed "l	ock and ke	v" mode	l to	50.	Enzy	yme B requires Zn^{2^+} in order to
10.		enzyme-sub			1 10			yze the conversion of substrate X.
	-	•		iction:			The	zinc is best identified as a(n):
	(A)	Koshland (1	1959)				(A)	Coenzyme
	(B)	Wilhelm Ku	uhne (1878)				(B)	Activator
	(C)	Fischer (189	98)				(C)	Substrate
	(D)	None of the	above				(D)	Product

(8)

Set-A

- 51. The enzyme minus its coenzyme is referred to as the :
 - (A) Iso-enzyme
 - (B) Metalloenzyme
 - (C) Apoenzyme
 - (D) All of the above
- 52. The "lock and key" model of enzyme action illustrates that a particular enzyme molecule:
 - (A) forms a permanent enzymesubstrate complex
 - (B) may be destroyed and resynthesized several times
 - (C) interacts with a specific type of substrate molecule
 - (D) reacts at identical rates under all conditions
- 53. An inhibitor that changes the overall shape and chemistry of an enzyme is known as a(n):
 - (A) Auto-steric inhibitor
 - (B) Competitive inhibitor
 - (C) Steric inhibitor
 - (D) Non-competitive inhibitor
- 54. The minimum amount of energy needed for a process to occur is called the :
 - (A) Minimal energy theory
 - (B) Process energy
 - (C) Kinetic energy
 - (D) Activation energy

- 55. A student conducts an experiment to test the efficiency of a certain enzyme. Which would probably not result in a change in the enzyme's efficiency?
 - (A) Adding an acidic solution to the setup
 - (B) Adding more substrate but not enzyme
 - (C) Increasing temperature of solution
 - (D) All (A), (B) and (C) change enzyme's efficiency
- 56. Enzymes function as:
 - (A) Organic catalysts
 - (B) Inorganic catalysts
 - (C) Inhibitors
 - (D) All of the above
- 57. The first step in any reaction catalysed by an enzyme is the formation of a specific association between the molecules called an:
 - (A) Enzyme-product complex
 - (B) Enzyme-intermediate complex
 - (C) Enzyme-substrate complex
 - (D) None of the above

58.	The f	function of competitive inhibitors is	61.			occ	curs	when	the	inhibi	tory
	defin	ed by their ability to interact or bind		chen	nical,	whic	ch	does	not	have	to
	to:			reser	nble	the	subs	trate,	bind	ls to	the
				enzy	me of	her th	an a	t the a	ctive	site?	
	(A)	The active site of an enzyme		(A)	Non	-comp	etiti	ve Inl	nibitio	on	
	(B)	Regulatory sub-units of an enzyme		(B)	Con	petiti	ve Ir	nhibiti	on		
	(C)	Non-competitive inhibitor		(C)	Unc	atalys	ed re	eaction	1		
	(D)	Enzyme cofactors		(D)	All ((A), (E	3) ar	nd (C)			
		·	62.	Whic	ch one	e is no	t att	ribute	of en	zyme	?
59.	If an	enzyme solution is saturated with		(A)	Spec	cific in	nat	ure			
	subst	rate, the most effective way to		(B)	Prot	ein in	chei	nistry			
	obtai	n an even faster yield of products		(C)	Con	sumed	l in 1	reactio	n		
	woul	d be :		(D)	Incre	eases 1	rate	of rea	ction		
	(A)	Add more of the enzymes	63.	Whic	ch or	ne ina	activ	ates	an ei	nzyme	by
	(B)	Add more substrate			•				shap	e of	the
	, ,			activ	e site	of an	enzy	yme ?			
	(C)	Add an allosteric inhibitor		(A)	Non	-comp	etiti	ve inh	nibito	r	
	(D)	Add a non-competitive inhibitor		(B)	Con	npetiti	ve ir	hibito	or		
	. .			(C)	Coe	nzyme	•				
60.	Durn	ng the final product of		(D)	Acti	vator					
	a met	tabolic pathway turn off the first step	64.	Enzy	mes	are hi	ghly	spec	ific fo	or a g	iven
	of me	etabolic pathway.		subs	trate	which	is	due t	o the	shap	e of
	(A)	Positive feedback		their	?						
	(B)	Negative feedback		(A)	Acti	ve site	e				
	(C)	C) Competitive feedback		(B)	Allo	steric	site				
	(C)			(C)	Non	-comp	etiti	ve site	е		
	(D)	Both (A) and (C)		(D)	Non	e of th	ne ab	ove			
BCH-	2002	(10)								Set	- A

65.	The name 'enzyme' was suggested in	69.	At high temperature the rate of enzyme			
	1878 by the German physiologist :		action decreases because the increased			
	(A) Wilhelm Kuhne		heat:			
	(B) Koshland		(A) Changes the pH of the system			
	(C) Fischer		(B) Alters the active site of the enzyme			
	(D) Paul Filder		(C) Neutralize acids and bases in the			
<i>((</i>	The '11 and 1 and 1 and 2 and 2 and 2		system			
66.	The "lock and key hypothesis" attempts		(D) Increases the concentration of			
	to explain the mechanism of:		enzymes			
	(A) vacuole formation	70.	Which of the following enzymes would			
	(B) pinocytosis		digest a fat ?			
	(C) sharing of electrons		(A) Sucrase			
	(D) enzyme specificity		(B) Protease			
67.	An enzyme that hydrolyzes protein will		(C) Ligase			
	not act upon starch. This fact is an	71.	(D) Lipase			
	indication that enzymes are:		At about 0° C, most enzymes are :			
	(A) hydrolytic		(A) Inactive			
	(B) specific		(B) Active			
	(C) catalytic		(C) Destroyed			
	(D) synthetic		(D) Replicated			
68.	The site where enzyme catalyzed reaction		•			
00.	·	72.	Catalytic triads is not present in one of			
	takes place is called:		the following enzyme:			
	(A) Active site		(A) Chymotrypsin			
	(B) Allosteric site		(B) CarboxypeptidaseA			
	(C) Denatures site		(C) Trypsin			

(D) Elastase

(D) Dead site

73.	Which of the enzymes do not involve	77.	Choose a nano peptide out of the
	metal ion catalysis ?		following:
	(A) CarboxypeptidaseA		(A) Oxytocin
	(B) Enolase		(B) Vasopressin
	(C) NMPkinase		(C) Bradykinin
	(D) Hexokinase		(D) All of the above
74.	The coenzyme not involved in hydrogen	78.	To calculate the turnover number of an enzyme, you need to know:
	transfer:		(A) the enzyme concentration.
	(A) FMN		(B) the initial velocity of the catalyzed
	(B) FAD		reaction at $[S] \gg K_m$.
	(C) NAD ⁺		(C) the initial velocity of the catalyzed reaction at low [S].
	(D) Cytochromec		(D) Both (A) and (B)
75.	In the feedback regulation the end	79.	The isoenzymes of LDH:
	product binds at :		(A) Differ only in a single amino acid
	(A) Active site		(B) Differ in catalytic activity
	(B) Allosteric site		(C) Exist in 5 forms depending on M
	(C) E-S complex		and H monomer contents
	(D) None of the above		(D) Occur as monomers
76.	HIV-1 Protease a san :	80.	The tear secretion contains an
70.			antibacterial enzyme known as:
	(A) Serine protease		(A) Zymase
	(B) Aspartie protease		(B) Diastase
	(C) Cysteine protease		(C) Lysozyme
	(D) Metalloprotease		(D) Lipase

(12)

Set-A

- 81. The technique for purification of proteins that can be made specific for a given protein is:
 - (A) Gel filtration chromatography
 - (B) Thin layer chromatography
 - (C) Affinity chromatography
 - (D) Electrophoresis
- 82. Multienzyme complex means:
 - (A) It is made up of a single polypeptide
 - (B) Some of the enzymes which possess more than one polypeptide chain
 - (C) Possessing specific site to catalyse different reaction in a sequence
 - (D) Enzymes made up of apoenzyme and coenzyme
- 83. Hexokinase is classified as a/an:
 - (A) Oxidoreductase enzyme
 - (B) Transferases enzyme
 - (C) Hydrolases enzyme
 - (D) Lyases enzyme
- 84. Most of the enzymes of the higher organism show optimum activity around :
 - (A) pH 1-2
 - (B) pH 10-11
 - (C) pH 6-8
 - (D) pH 4-6

- 85. Activation or inactivation of certain key regulatory enzymes is accomplished by covalent modification of the amino acid:
 - (A) Tyrosine
 - (B) Phenylalanine
 - (C) Lysine
 - (D) Serine
- 86. An enzyme catalyzing oxidoreduction, using oxygen as hydrogen acceptor is:
 - (A) Cytochrome oxidase
 - (B) Lactate dehydrogenase
 - (C) Malate dehydrogenase
 - (D) Succinate dehydrogenase
- 87. Lineweaver-Burk double reciprocal plot is related to :
 - (A) Substrate concentration
 - (B) Enzyme activity
 - (C) Temperature
 - (D) Both (A) and (B)
- 88. Phosphofructokinase key enzyme in glycolysis is inhibited by :
 - (A) Citrate and ATP
 - (B) AMP
 - (C) ADP
 - (D) TMP

89.	Hexokinase is inhibited in an allosteric	93.	An enzyme can accelerate a reaction up
	manner by :		to:
	(A) Glucose-6-Phosphate(B) Glucose-1-Phosphate		(A) 10^{10} times
	(C) Fructose-6-phosphate		(B) 10^1 times
	(D) Fructose-1, 6-biphosphate		(C) 10^{100} times
90.	Pyruvate dehydrogenase a multienzyme		(D) 10 times
	complex is required for the production of:	94.	Enzymes are required in traces because
	(A) Acetyl-CoA		they:
	(B) Lactate		(A) Have high turnover number
	(C) Phosphoenolpyruvate(D) Enolpyruvate		(B) Remain unused at the end of
91.	The enzyme aspartate transcarbamoylase of pyrimidine biosynthesis is inhibited		reaction and are re used (C) Show cascade effect
	by:		(D) All correct
	(A) ATP (B) ADP	95.	The rate of most enzyme catalysed reactions changes with pH. As the pH
	(C) AMP (D) CTP		increases, this rate :
92.	Enzyme catalysed reactions occur in :		(A) reaches a minimum, then increases
	(A) Pico seconds		(B) reaches a maximum, then decreases
	(B) Micro seconds(C) Milli seconds		(C) increases
	(D) None of the above		(D) decreases

(14)

Set-A

- 96. Which of the following regulatory reactions involves a reversible covalent modification of an enzyme?
 - (A) Phosphorylation of serine OH on the enzyme
 - (B) Allosteric modulation
 - (C) Competitive inhibition
 - (D) Non-competitive inhibition
- 97. Which one of the following statements is not a characteristic of allosteric enzymes?
 - (A) They frequently catalyze a committed step early in a metabolic pathway
 - (B) They are often composed of subunits
 - (C) They follow Michaelis-Menten kinetics
 - (D) They frequently show cooperativity for substrate binding
- 98. ATP is a co-substrate as well as an allosteric inhibitor of :
 - (A) Phosphofructokinase
 - (B) Hexokinase
 - (C) Glucokinase
 - (D) None of the above

- 99. The rate of an enzyme catalyzed reaction was measured using several substrate concentrations that were much lower than K_m , the dependence of reaction velocity on substrate concentration can best be described as:
 - (A) Independent of enzyme concentration
 - (B) A constant fraction of V_{max}
 - (C) Equal to K_m
 - (D) Proportional to the substrate concentration
- 100. The Michaehis-Menten hypothesis:
 - (A) Postulates the formation of an enzyme substrate complex
 - (B) Enables us to calculate the isoelectric point of an enzyme
 - (C) States that the rate of a chemical reaction may be independent of substrate concentration
 - (D) States that the reaction rate is proportional to substrate concentration

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

Q.3 A \bigcirc C D

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में
सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

 प्रश्न 1 (A)
 (C)
 (D)

 प्रश्न 2 (A)
 (B)
 (D)

 (A)
 (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।